
Chapter 16
Neolithic Transitions: Diffusion of People
or Diffusion of Culture?

Joaquim Fort

16.1 Introduction

The Neolithic transition is defined as the shift from hunting-gathering (Mesolithic)
into farming and stockbreeding (Neolithic). When did it happen? In Archeology,
years Before Present (BP) are defined as years before 1950 AD. The Neolithic arrived
from the Near East into Southeastern Europe at about 8000 years BP. Then it spread
gradually westwards and northwards, until about 5000 yr BP (Fig. 16.1). Europe
is the continent for which more Neolithic sites per unit area have been dated. This
is the reason why most models on Neolithic transitions were originally applied to
Europe. The spread of farming in Europe can be seen in Fig. 16.1, which is an spatial
interpolation of the dates of 918 early Neolithic sites [1] based on a database gathered
by archeologist M. vander Linden [2].

As pointed out by Lemmen and Gronenborn (Chap. 17, this volume), it is always
important to attempt higher levels of data density and quality. However, the arrival
times of the Neolithic at several areas (e.g., Greece, southern Italy, Germany, and
England) are similar in Figs. 16.1 and 17.1. Note that Fig. 16.1 uses years BP. In
contrast, Fig. 17.1 uses years before Christ (BC).

In this chapter, our first aim is to use an interpolation map (Fig. 16.1) to obtain
a mathematically justified map of local speeds of the Neolithic front (this is not
possible using drawings such as Fig. 17.1). Once we have a speed map, we will
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Fig. 16.1 Interpolation of the dates of 918 early Neolithic sites (circles). Each color corresponds to
a 250-year interval. We see that the oldest sites are located in the southeast. Note also that farming
propagated faster westwards than northwards. Moreover, slowdowns in the Alps and Northern
continental Europe are clearly displayed. The patch inside the black rectangle is an example of an
anomalously old region, as compared to its surroundings. Due to the paucity of sites, the contours
are less detailed in some regions (e.g., upper right and lower left). This map was obtained by means
of universal linear kriging interpolation. Dates are given in calibrated years Before Present (BP), as
defined in the main text (calibration is a well-known correction, due to the fact that the percentage
of radioactive carbon in the atmosphere is not constant). Adapted from Ref. [1]

explore possible explanations in terms of human behavior by making use of the
appropriate generalized diffusion equations.

Figure 16.1 shows at once that we are dealing with a gradual spread. Of course,
there are some anomalously old/young regions (e.g., the patch inside the black rect-
angle in Fig. 16.1). Different interpolation methods yield some differences for small
anomalous regions, but those of the size of that inside the rectangle in Fig. 16.1 and
larger usually appear independently of the interpolation method used. The existence
of rivers, mountains, different types of soils, etc., probably makes some areas more
attractive for farmers than others. This is one of the reasons why the presence of
anomalously old or young regions in interpolation maps is probably unavoidable
(even if we had a database totally free of errors and with all dates corresponding
exactly to the earliest farming activity at each site). A very clear example are the
Alps. These mountains cause an anomalously young region (as compared to its
surroundings) in Fig. 16.1. This Alpine region contains many sites and is anoma-
lously young, independently of the interpolation method and also of the database
used. Thus anomalous regions are not necessarily artifacts arising from limitations
of the database and/or the interpolation technique. Nevertheless, some of them may
certainly be artifacts, especially if they contain few or no sites and their presence
depends on the interpolation method and/or database used. This is probably the case
for the anomalously old region inside the rectangle in Fig. 16.1. It is possible that
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using future databases this region will not appear (e.g., because a site inside it is
erroneously too old and/or some sites at the right of it are erroneously too early).
However, practice in spatial interpolation of Neolithic dates shows that some such
anomalous regions always appear (and usually we have no means to know their
origin). But this should not be a problem after all. Smoothing techniques are well-
established in geographic analysis. They yield, with increasing coarse graining, maps
with decreasing subtleness, where sufficiently small anomalous regions gradually
disappear without substantially modifying the overall spread pattern. For example,
Fig. 16.2b has been obtained from Fig. 16.1 by applying 10 times a smoothing proce-
dure that simply replaces the date of each spatial point in the interpolation grid by
the average of that date and those of the 8 surrounding points. It is seen that the
isochrones in Fig. 16.2b are smoother than those in Fig. 16.1. By repeating this
smoothing procedure more times, we obtain still smoother isochrones (Fig. 16.2c).
This makes it possible to analyze the overall spatial trends by getting rid of irrelevant
local features that are likely artifacts due to our limited knowledge (not all sites have
been discovered, and sources of error exist). For example, the anomalously old region
in the rectangle in Fig. 16.1 has disappeared in Fig. 16.2c but the continental trend in
the dates (i.e., the gradual decrease westwards and northwards) remains. It is worth
to mention that in this way, a totally disordered map of speed vectors becomes a
coherent, meaningful directional map of the Neolithic spread (Figs. S1 and 2 in Ref.
[1]). For these reasons, smoothing seems a reasonable procedure to estimate local
speed directions and magnitudes (in kilometers per year) [1], as we will see below.
Note that this is obviously impossible from drawings such as Fig. 17.1. The aim of
Chap. 17 is a different one, because it is based on a mathematical model that their
authors have compared, similarly to other researchers [3–5], to the average speed
implied by the dates obtained by radiocarbon dating (Sect. 17.3 in this volume and
Ref. [6]). At the end of this chapter, we will discuss the mathematical model used in
Chap. 17.

The spread of the Neolithic in Europe was clearly gradual, because as we move
westwards and northwards, we find more and more recent dates (Figs. 16.1 and 17.1).
This suggests that it may make sense to apply diffusive models to the spread of the
Neolithic. A quantitative justification is the following. We know from Chap. 2 that
diffusion equations provide large-scale descriptions of systems where there are, at the
small scale, molecules or individuals following random walks (see Fig. 2.5). Does this
scenario apply to the spread of the Neolithic? For the moment, assume a very simple
model in which agriculture would have spread only due to the dispersal of farmers.
Then each random walk is the trajectory obtained by joining, e.g., the birthplaces of
an individual’s parent, the individual in question, one of his/her children, and so on.
Looking at Fig. 16.1, we can easily estimate that agriculture spread from Greece to
the Balkans and Central Europe at a speed of roughly 1 km/year. Thus, assuming a
generation time of about 32 year [7], farming spread about 32 km per generation.
This is much less than the scale of Fig. 16.1 (about 3000 km). This comparison
provides a quantitative justification for the use of diffusion-type equations in models
of the Neolithic spread.
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Ammerman and Cavalli-Sforza [8] were the first to apply a diffusive model to the
spread of the Neolithic. They used Fisher’s wave-of-advance model. In this model,
the speed of the Neolithic front is given by Eq. (2.17),

vFisher = 2
√

Dα, (16.1)
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�Fig. 16.2 Isochrones obtained by smoothing (“coarse graining”) the map in Fig. 16.1 a single time
(a), 10 times (b) and 20 times (c) (i.e. with 1, 10, and 20 iteration steps, where each step consists
in replacing the date of each individual point of the map by the average of that date and those of
the 8 surrounding points of the square interpolation grid). A map obtained by smoothing 40 times
is included as Fig. 16.4a. Note that anomalous regions (such as that inside the black rectangle in
Fig. 16.1) gradually disappear. This is useful to perform quantitative estimates of local speed vectors
and magnitudes (see Fig. 16.4b for the latter). Adapted from Ref. [1], Supp. Info. Appendix, Sect.
S1

where D is the diffusion coefficient and α the initial growth rate (i.e., the net repro-
duction rate at low population densities). This relation has already been introduced
as Eq. (2.17) in Chap. 2. Following Ref. [3] we sketch, for the interested reader, the
line of reasoning leading, eventually, to this relation.

Let N (x, y, t) stand for the population density of Neolithic individuals (i.e.,
farmers), where x and y are Cartesian coordinates and t is the time. We assume that
a well-defined time scale T between two successive migrations occurs. This model
(to be improved in Sect. 16.3) is based on the assumption (see Ref. [9], Sect. 11.2)
that, between the values t and t + T , we can add up the changes in the number of
individuals in an area differential ds = dx dy due to migrations (sub index m) and
to population growth (sub index g),

[N (x, y, t + T ) − N (x, y, t)]ds = [N (x, y, t + T ) − N (x, y, t)]mds

+ [N (x, y, t + T ) − N (x, y, t)]gds. (16.2)

Let �x and �y stand for the coordinate variations of a given individual during T.
We introduce the dispersal kernel φN (�x ,�y), defined such that φN (�x ,�y) is the
probability per unit area to move from (x + �x , y + �y) at time t to (x, y) at time
t + T . We can rewrite the parentheses in the first term on the right as

[N (x, y, t + T ) − N (x, y, t)]m =
∞∫

−∞

∞∫

−∞
N�φN d�x d�y − N (x, y, t)

≈
〈
�2

〉
4

(
∂2 N

∂x2
+ ∂2 N

∂y2

)
, (16.3)

where N� stands for N (x + �x , y + �y, t), and φN for φN (�x ,�y). In the last line
in Eq. (16.3), we have performed a second-order Taylor expansion in �x and �y,

and taken into account that
∫ ∞
−∞

∫ ∞
−∞ φN d�x d�y = 1. We have also assumed that

the kernel is isotropic, i.e.,

φN (�x ,�y) = φN (−�x ,�y) = φN (�x ,−�y), (16.4)

and introduced the mean-squared displacement as
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〈
�2

〉 =
∞∫

−∞

∞∫

−∞
�2φN (�x ,�y)d�x d�y, (16.5)

where �2 = �2
x + �2

y . Note that Eq. (16.4) implies that
〈
�x

〉 = 0,
〈
�y

〉 = 0,〈
�x�y

〉 = 0 and
〈
�2

x

〉 = 〈
�2

y

〉
, which has been applied in the last step in

Eq. (16.3). This is Einstein’s approach to diffusion [10].
Finally we rewrite the parentheses in the last term in Eq. (16.2) as a Taylor

expansion,

[N (x, y, t + T ) − N (x, y, t)]g =
(

T F(x, y, t) + T 2

2

∂ F

∂t
+ . . .

)
(16.6)

where F(x, y, t) is the change in population density per unit time, due to births and
deaths.

Expanding the left-hand side of Eq. (16.2) up to first order and collecting terms,
we arrive at Fisher’s reaction-diffusion equation,

∂ N

∂t
= D

(
∂2 N

∂x2
+ ∂2 N

∂y2

)
+ F(x, y, t), (16.7)

where we have introduced the diffusion coefficient,

D =
〈
�2

〉
4T

. (16.8)

which is the two-dimensional analogue of the one-dimensional Eq. (2.3). Concerning
the net reproduction function F(x, y, t), in Chap. 2 an example is presented such
that

F(x, y, t) = αN (x, y, t) (16.9)

(see the last term in Eq. (2.15)). This reproduction function corresponds to exponen-
tial growth, because without diffusion (D = 0) Eq. (16.7) yields N = N0 exp [αt],
with N0 = N (t = 0). Thus Eq. (16.9) is an example of interest, but the population
density would never stop growing. A biologically more realistic case is the so-called
logistic growth function,

F(x, y, t) = αN (x, y, t)

[
1 − N (x, y, t)

Nmax

]
, (16.10)

where Nmax is the saturation density, i.e., the population density at which net repro-
duction vanishes (note that F(x, y, t) = 0 if N (x, y, t) = Nmax ). The functions of
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Fig. 16.3 Plots of population density N versus time t . The dashed line corresponds to exponential
growth, N = N0eαt (see the text below Eq. (16.9)), and the full line to logistic growth, N =
N0 Nmax eαt/(Nmax + N0(eαt − 1)) (see Eq. (16.12))

exponential and logistic growth are compared in Fig. 16.3. A more detailed introduc-
tion into the formalism of logistic growth is provided by Sect. 3.4.1 of Chap. 3, with an
example of the benefit of this reasoning on predicting the spreading of technological
innovations given in Sect. 14.2.2 of Chap. 14.

Equation (16.7) with the logistic growth function (16.10) is called Fisher’s equa-
tion. For our purposes here, we can consider the simple case in which all parameters
(D, α and Nmax ) are independent of x , y and t . Travelling wave solutions (also
called fronts or waves of advance) are defined as constant-shape solutions, i.e., those
depending not on x , y and t separately but only on z = r − vt , where v is the front
speed and r = √

x2 + y2 the radial coordinate.
Kolmogorov et al. [11] showed that in Fisher’s model, a front is formed and its

speed is given by Eq. (16.1), assuming that initially the population density N (x, y, t)
has compact support. In practice, this assumption means that N (x, y, t = 0) = 0
everywhere except in a finite region. This is biologically realistic, in contrast to
solutions such that N (x, y, t = 0) �= 0 for all values of x, y (−∞ < x < ∞,
−∞ < y < ∞). The latter solutions are not biologically realistic, because in
practical applications we always want to analyze the spread of organisms that are
initially present in a finite region of space.

Using variational methods, Aronson and Weinberger [12] also showed that the
speed of front solutions to Fisher’s equation is given by Eq. (16.1) (see Sect. IV.A in
Ref. [13] for a simple derivation based on variational principles).

Importantly, Fisher’s wave-of-advance speed (1) does not depend on Nmax . More-
over, this speed is the same as for exponential growth (Eq. (16.9)), see Eq. (2.17).
Thus, the wave-of-advance speed is the same in both the logistic and the exponential
models. However, their shape is different, because for exponential growth the popu-
lation density keeps growing in time, whereas for logistic growth it stops growing at
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N = Nmax (see Fig. 16.3). Thus, the waves of advance under logistic growth have
the profile shown in Fig. 2.6, where we can see that the population density stops
growing once N = Nmax . In contrast, for exponential growth, the population density
keeps growing forever everywhere (see Ref. [14], Figs. 3.3 and 3.6).

Returning to the spread of the farming, Ammerman and Cavalli-Sforza [8] noted
from archeological dates that the speed of the Neolithic wave of advance was about
1 km/year. They next asked the following interesting question: what speed does
Fisher’s model (Eq. (16.1)) predict? In order to answer this, empirical values for

〈
�2

〉
and T are needed to estimate D using Eq. (16.8). Additionally, an empirical value
for α is needed to estimate the speed from Eq. (16.1). Ethnographic observations of
preindustrial populations have measured the displacement of individuals and found
the average for the mean-squared displacement per generation

〈
�2

〉 = 1288 km2 [1,
15] and the mean generation time (defined as the age difference between a parent
and his/her children) T = 32 year [7]. Thus, we obtain from Eq. (16.8) D = 10
km2/year. On the other hand, for populations which settle in empty space, N � Nmax

and Eq. (16.10) reduces to (16.9), so that we can fit exponential curves (graphically,
we can understand this because both curves in Fig. 16.3 overlap in the left-hand
side). Ethnographic data yield the average exponent α = 0.028 year−1 [15]. Using
these values in Eq. (16.1), we estimate a front speed of about 1 km/year, which
is similar to the speed obtained from the archeological observations. Indeed, as
mentioned above, looking at Fig. 16.1, we can easily estimate that agriculture spread
from Greece to the Balkans and Central Europe at a speed of roughly 1 km/year
(more precise estimations with recent data, based on regression analysis [4] and
geostatistical techniques [1], agree with this average). This agreement was first noted
by Ammerman and Cavalli-Sforza [5, 8]. In this way, Ammerman and Cavalli-Sforza
noted that diffusive models are useful not only because they make it possible to
describe mathematically a major event in prehistory (the spread of agriculture), but
also because they indicate a possible mechanism for it, namely the spread of people
(i.e., of populations of farmers). They called this demic diffusion (from the Greek
word demos, which means people). In contrast, most authors at the time advocated
for the learning of farming by hunter-gatherers (i.e., for the spread of agriculture
without substantial spread of people) [16]. The latter mechanism is called cultural
diffusion.

16.2 First Improvement: Beyond the Second-Order
Approximation

In the derivation of Eq. (16.7) we have performed Taylor expansions up to first order
in time and second order in space. Without those approximations we obtain, instead
of Eq. (16.7),
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N (x, y, t + T ) − N (x, y, t) =
∞∫

−∞

∞∫

−∞
N�φN d�x d�y − N (x, y, t) + RT [N (x, y, t)]),

(16.11)

where the joint effects of reproduction and survival are, again, well-described by the
solution to a logistic growth function, namely [9]

RT [N (x, y, t)] = eαT Nmax N (x, y, t)

Nmax + (eαT − 1)N (x, y, t)
. (16.12)

When observed dispersal data are used, the kernel per unit length ϕN (�) is defined
as the probability to disperse into a ring of radius � and width d�, divided by d�.
If individuals of the population N have probabilities p j to disperse at distances r j (j
= 1 ,2, …, M), we can write

ϕN (�) =
M∑

j=1

p jδ
(1)(r j ), (16.13)

where δ(1)(r j ) is the 1D Dirac delta centered at r j (i.e., a function that vanishes
everywhere except at � = r j ). Since the total probability must be one,

1 = ∞∫
0

ϕN (�)d�, (16.14)

and ϕN (�) is clearly a probability per unit length. In contrast, the kernel φN
(
�x ,�y

)
in Eq. (16.11) is a probability per unit area (because it is multiplied by d�x d�y ,
which has units of area). The normalization condition for φN

(
�x ,�y

)
is therefore

1 =
∞∫

−∞

∞∫

−∞
φN (�x ,�y)d�x d�y = 2π

∞∫

0

φN (�)�d�, (16.15)

where we have used polar coordinates � =
√

�2
x + �2

y , θ = tan−1 �y

�x
and assumed

the kernel is isotropic, φN (�x ,�y) = φN (�). Comparing Eqs. (16.14) and (16.15),
we see that the dispersal probability per unit length (i.e., into a ring of area 2π�d�)
ϕN (�) is related to that per unit area φN (�) as [17]

ϕN (�) = 2π�φN (�) (16.16)

and Eq. (16.13) yields
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φN (�) =
M∑

j=1

p j
δ(1)(r j )

2π�
. (16.17)

For homogeneous parameter values, the speed will not depend on direction and can
thus be more easily computed along the x-axis (y = 0). Consider a coordinate frame
z = x − vt moving with the wave of advance (v is the front speed). The population
density of farmers will be equal to its saturation density in regions where the Neolithic
transition is over, and it will decay to zero in regions where few farmers have arrived.
Thus, we assume as usual the ansatz [17] N (x, y, t) ≈ N0exp[ − λz] → 0 for
z → ∞ (with λ > 0). Then, assuming that the minimum speed is that of the front
(which has been verified by numerical simulations), we obtain for the speed v of
front solutions to Eq. (16.11) [15]

vNCohab = min
λ>0

ln
[
(eαT − 1)

∑M
j=1 p j I0(λr j )

]

T λ
, (16.18)

where the sub index NCohab indicates that this is not a cohabitation model (see the
next section), and I0(λr j ) is the modified Bessel function of the first kind and order
zero. In this model, the speed can be found by plotting the fraction in Eq. (16.18) as
a function of λ and finding its minimum.

In Ref. [15], it has been shown that the differences in the front speed obtained
from Eq. (16.13) and Fisher’s approximation, Eq. (16.1), are up to 49% for human
populations. So the effect of higher-order terms is not negligible.

16.3 Second Improvement: Cohabitation Equations

For human populations, newborn children cannot survive on their own. However,
when they come on age they can move away from their parents. This point has led
some authors to use an equation of the so-called cohabitation type, namely

N (x, y, t + T ) =
∞∫

−∞

∞∫

−∞
RT [N�]φN d�x d�y, (16.19)

where RT [N ] is again given by Eq. (16.12). Then the speed of front solutions is [15,
18]

vCohab = min
λ>0

αT + ln
[∑M

j=1 p j I0(λr j )
]

T λ
. (16.20)
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The reason why Eq. (16.19) is more reasonable than Eq. (16.11) is that, clearly,
Eq. (16.11) assumes that individuals born at (x, y) at time t (last-but-one term) will
not move at all, i.e., they will all still be at (x, y) on coming of age (time t + T , left-
hand side). Thus, for example, in the simple case in which all parents move, they will
leave all of their children alone. Such an anthropologically unrealistic feature makes
it clear that Eq. (16.11) is less accurate than Eq. (16.19). For additional derivations
and figures showing that Eq. (16.11) is less realistic than the cohabitation Eq. (16.19),
see especially Fig. 1 in Ref. [15], Fig. 17 in Ref. [17], and Ref. [18].

A more direct way to see the limitations of Fisher’s speed (16.1) is to note that it
yields vFisher → ∞ for α → ∞. In contrast, it has been shown that the cohabitation
speed (16.20) yields for α → ∞ the value vCohab = rmax/T , i.e., the maximum
dispersal distance divided by the generation time (see Fig. 2 in Ref. [15]), which
is physically reasonable. Moreover, the error of Fisher’s speed (16.1) relative to
Eq. (16.20) reaches 30% for realistic human kernels and parameter values [15]. This
error is still larger when cultural diffusion is included [1] (next section).

16.4 Demic-Cultural Model

Up to now we have only considered equations with a single mechanism for the spread
of the Neolithic, namely the dispersal of farmers (demic diffusion). But agriculture
can be also learnt by hunter-gatherers (cultural diffusion). When this conversion of
hunter-gatherers into farmers (cultural transmission) is taken into account, we might
be tempted to generalize Eq. (16.19) into

N (x, y, t + T ) =
∞∫

−∞

∞∫

−∞
RT [N�]φN d�x d�y

+
∞∫

−∞

∞∫

−∞
c[N�, P�]φconverts

N d�x d�y, (16.21)

where P� = P(x + �x , y + �y) is the population density of hunter-gatherers at
(x + �x , y + �y). The cultural transmission function c[. . .] in Eq. (16.21) is due
to the conversion of hunter-gatherers into farmers. Thus, a similar equation for the
population density of hunter-gatherers P (x, y, t + T ) could be proposed, with a
minus sign in the last term. A recent derivation has found for the cultural transmission
function c[. . .] (see Ref. [19], Eq. (1))

c[N (x, y, t), P(x, y, t)] = f
N (x, y, t)P(x, y, t)

N (x, y, t) + γ P(x, y, t)
, (16.22)
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where f and γ are cultural transmission parameters. The kernel φconverts
N

(
�x ,�y

)
in Eq. (16.22) is the dispersal kernel of hunter-gatherers that have been converted
into farmers. Since they now behave as farmers, let us assume that this kernel is the
same as φN

(
�x ,�y

)
. Then Eq. (16.22) becomes

N (x, y, t + T ) =
∞∫

−∞

∞∫

−∞
RT [N�]φN d�x d�y +

∞∫

−∞

∞∫

−∞
f

N� P�

N� + γ P�

φN d�x d�y.

(16.23)

A model of this kind was applied recently (see Eq. 5 in Ref. [19]). It is an approx-
imation that may be valid in some regions (with mainly demic diffusion) but it
cannot lead to a purely cultural model of Neolithic spread (because according to
Eq. (16.23) there is no front propagation in the absence of demic diffusion, i.e., if
φN

(
�x ,�y

) �= 0 only at vanishing distance, i.e., for � = (�2
x + �2

y)
1/2 = 0). Thus

we will here consider a more realistic model in two ways. Firstly we take into account
that, according to ethnographic observations, hunter-gatherers can learn agriculture
from farmers located some distance away [1]. Then Eq. (16.23) is generalized into

N (x, y, t + T ) =
∞∫

−∞

∞∫

−∞
RT [N�]φN d�x d�y

+
∞∫

−∞

∞∫

−∞
φN d�x d�y

∞∫

−∞

∞∫

−∞
φ

′
P d�′

x d�′
y f

N�+�′ P�

N�+�′ + γ P�

,

(16.24)

where N�+�′ stands for N
(
x + �x + �

′
x , y + �y + �

′
y, t

)
.

In practice, the cultural kernel φ
′
P(�′

x ,�
′
y) (which is abbreviated as φ

′
P in

Eq. (16.24)) is a set of probabilities Pk for hunter-gatherers to learn agriculture
from farmers living at distances Rk = (�′ 2

x + �′ 2
y )1/2, during a generation time T .

This is similar to the fact, mentioned above Eq. (16.13), that in practice the demic
kernel φN

(
�x ,�y

)
is a set of probabilities p j for farmers to disperse at distances

r j = (�2
x + �2

y)
1/2, also during a generation time T .

Secondly, we note that after a generation time T , reproduction will have led to
new individuals not only in the population of farmers (first line in Eq. (16.24)) but
also in the population of hunter-gatherers converted into farmers (second line in
Eq. (16.24)). Thus we finally generalize Eq. (16.24) into

N (x, y, t + T ) =
∞∫

−∞

∞∫

−∞
RT [N�]φN d�x d�y
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+
∞∫

−∞

∞∫

−∞
φN d�x d�y

∞∫

−∞

∞∫

−∞
φ

′
P d�′

x d�′
y RT

[
f

N�+�′ P�

N�+�′ + γ P�

]
.

(16.25)

The speed of front solutions to Eq. (16.25) is [1]

v = min
λ>0

αT + ln
[(∑M

j=1 p j I0(λr j )
)(

1 + C
[∑Q

k=1 Pk I0(λRk)
])]

T λ
, (16.26)

with C = f/γ . This reduced parameter C was called the intensity of cultural trans-
mission [19] because, according to Eq. (16.22), C = f/γ is the number of hunter-
gatherers converted per farmer at the front leading edge (i.e., in regions such that
N � P). Without cultural transmission (C = 0), the demic-cultural front speed,
given by Eq. (16.26), reduces to the purely demic speed, Eq. (16.20), as it should.
With frequency-dependent cultural transmission, Eq. (16.22) is more complicated
and the equations are longer, but the final results are exactly the same [1].

It is important to note that cultural transmission (the factor in brackets [ f . . .] at
the end of the second line in Eq. (16.25)) is applied in a term that also contains the
effects of net reproduction (RT ) and dispersal (the kernel of farmers φN (�x ,�y)).
Thus, some hunter-gatherers will learn agriculture from farmers located a distance
(�′

x ,�
′
y), and the children of those converted hunter-gatherers will possibly move a

distance (�x ,�y) (similarly to the children of farmers, first line). Therefore, some
hunter-gatherers can learn agriculture from farmers and the next generation (i.e., the
children) of those hunter-gatherers will be farmers, in agreement with ethnographic
data [20].

Finally, a purely cultural model means no demic diffusion. In this model, the front
speed can be obtained from Eq. (16.26) without demic diffusion (r1 = 0 and p1 = 1),
namely

vC = min
λ>0

αT + ln
[
1 + C

(∑Q
k=1 Pk I0(λRk)

)]

T λ
, (16.27)

where the sub index C stands for purely cultural diffusion. This is the purely cultural
analogue to the purely demic speed given by Eq. (16.20). Both of them are, of course,
cohabitation models.

16.5 Demic Versus Cultural Diffusion in the Spread
of the Neolithic in Europe

What do the models above imply for the relative importance of demic and cultural
diffusion in the spread of the Neolithic in different regions of Europe? Let us first
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summarize a proposal [1], and later we will discuss an alternative possibility. First
of all, we need ranges for the parameters appearing in our equations.

The ranges for α and T that have been measured for preindustrial farming popu-
lations are 0.023 year−1 ≤ α ≤ 0.033 year−1 and 29 year ≤ T ≤ 35 year (see the SI
Appendix to Ref. [19] for details).

The dispersal kernel φN
(
�x ,�y

)
has been measured for each of the following

five preindustrial farming populations [15]. For each population, we give its purely
demic speed range, as predicted by the cohabitation model, Eq. (16.20), with its
dispersal kernel as well as α = 0.023 year−1 and T = 35 year (slowest speed) or
α = 0.033 year−1 and T = 29 year (fastest speed).

• Population A (Gilishi 15): purely demic speed range 0.87–1.15 km/year.
• Population B (Gilishi 25): purely demic speed range 0.92–1.21 km/year.
• Population C (Shiri 15): purely demic speed range 1.14–1.48 km/year.
• Population D (Yanomamö): purely demic speed range 1.12–1.48 km/year.
• Population E (Issongos): purely demic speed range 0.68–0.92 km/year.

We see that demic diffusion predicts Neolithic front speeds of at least 0.68 km/year.
Demic-cultural diffusion will be still faster. Thus, it has been suggested that perhaps
cultural diffusion could be responsible for the Neolithic spread in regions with speeds
below 0.68 km/year [1]. For simplicity, let us consider purely cultural diffusion,
Eq. (16.27), although a short-range demic kernel can be also included (Sect. S6 in
Ref. [1]). In order to estimate the speeds predicted by purely cultural diffusion, we
need the following cultural parameters.

The cultural transmission intensity C from hunter-gathering to farming has been
estimated from several case studies in Ref. [19] and the overall range is 1.0 ≤ C ≤
10.9.

The cultural kernel has been estimated for each of the following five populations,
from distances from hunter-gatherers camp locations to the villages of farmers, where
the hunter-gatherers practice agriculture [1]. For each population, we report the purely
cultural speed range obtained from Eq. (16.27) using its cultural kernel as well as
α = 0.023 year−1, T = 35 year and C = 1 (slowest speed) or α = 0.033 year−1,
T = 29 year and C = 10.9 (fastest speed).

• Population 1 (Mbuti, band I): speed range 0.17–0.36 km/year.
• Population 2 (Mbuti, band II): speed range 0.30–0.57 km/year.
• Population 3 (Mbuti, band III): speed range 0.32–0.66 km/year.
• Population 4 (Aka): speed range 0.09–0.19 km/year.
• Population 5 (Baka): speed range 0.03–0.07 km/year.

Thus, the purely cultural model yields 0.03–0.66 km/year. Note that this is slower
than the purely demic speed range found above (0.68–0.92 km/year).

Finally, for the demic-cultural model, Eq. (16.26), the slowest speed is obviously
0.68 km/year (see the purely demic model above). The fastest speed corresponds to
the strongest value observed for the intensity of cultural transmission (C = 10.9),
the fastest cultural kernel (population 3), the fastest demic kernel (population C or
D), the highest observed value of α (0.033 year−1), and the lowest observed value of
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T (29 year). Using these data in Eq. (16.25), we find that the fastest speed is obtained
for the demic kernel of population D yielding 3.04 km/year.

In Fig. 16.4b, the color scale has been chosen so that the red color corresponds
to the regions that can be explained by purely cultural diffusion (0.03–0.66 km/year,
from the purely cultural model above). The demic and demic-cultural models predict
speeds above 0.68 km/year and are thus too fast to be consistent with the archeological
data in the red regions in Fig. 16.4b. This suggests that cultural diffusion could explain
the Neolithic transition in Northern Europe, as well as in the Alps and west of the
Black Sea. The analysis of the areas where demic diffusion played a role is less
straightforward, but it is possible to determine the regions where the speed was
mainly demic (i.e., where the cultural effect was < 50%) [1]. They correspond to the
yellow regions in Fig. 16.4b. The regions where either demic or cultural diffusion
could have dominated are the blue regions in Fig. 16.4b. The blue regions appear
because we have used parameter ranges and several kernels (they would not appear
if we had used a single value for each parameter, a single demic kernel, and a single
cultural kernel). Finally, in the green regions in Fig. 16.4, the speed is too fast to
agree with any of the three models in the present chapter, but in continental Europe,
those regions contain very few sites and will probably disappear using more complete
databases (i.e., with more archeological sites).

In order to discuss an alternative possibility, let us note that the models presented
in this paper are simple in the sense that there are few parameters but, in spite of
this, their estimation is remarkably difficult. Indeed, so far it has not been possible
to estimate dispersal kernels, cultural kernels, or cultural transmission intensities
from purely archeological data. Therefore, for the time being, the only possibility
is to use ethnographic data instead (as already done by Ammerman and Cavalli-
Sforza [5] for the parameters in Fisher’s model). As long as it is not possible to
overcome this limitation, an open possibility will always be that prehistoric parameter
values might have been substantially different than those estimated from present
preindustrial populations. Recently, archeological data have been used to perform a
rough estimation of the growth rate α in Scandinavia, and it leads to a mainly demic
spread in spite of the front speed being slow (0.44-0.66 km/year) [21]. This opens
a very interesting possibility: if in the future it were possible to estimate growth
rates from archeological data for different regions of Europe, the map in Fig. 16.4b
could be refined by using a space-dependent growth rate. Thus, if the growth rate α

were smaller in northern Europe (as it seems to be in Scandinavia), it is possible
that some of the slow regions could be perhaps explained by a mainly demic model
(i.e., some of the red regions in Fig. 16.4b could perhaps not be purely cultural).
Unfortunately such a study has not been performed yet, because the estimation of
regional Neolithic growth rates from archeological data is still in its infancy. But this
could be an interesting topic of future research.

In recent years, speeds of Neolithic fronts have been measured in continents other
than Europe. This work has led to the proposal of the following general laws of
Neolithic spread [22, 23].



342 J. Fort

1. First law. The Neolithic spreads inland at a rate of about 1 km/year, although
there is substantial variation (0.44-3.6 km/year). This law is satisfied in at least
the following 13 case studies. It clearly holds for the Neolithic in overall Europe
[5, 4], southern Asia [24], the Balkans [25, 26], 3 European ceramic culture
areas (namely the Eastern Linear Pottery [25], the LinearBandKeramik [25] and
the Trichterbeckerkultur [25]) as well as for the eastern Bantu expansion in
Africa [27], the spread of domesticated rice in China and southeastern Asia [28],
and the Saladoid-Barrancoid and Incised-Punctuate expansions in tropical South
America [29]. In my view, the spread of the Neolithic in Scandinavia [21], the
southern Bantu spread, and the expansion of Khoi-khoi herders also support
this law, because there is no inconsistency with the facts that (i) the last two
case studies also agree with the second law below, and (ii) the Scandinavian one
supports the fifth law below.

2. Second law. If in addition to demic diffusion there is substantial cultural diffu-
sion, the Neolithic spreads more rapidly. This law has strong support from math-
ematical models (Sect. 16.4) and it is consistent with the observed rates for two
expansions in which cultural diffusion has been proposed to be of importance,
namely those of Khoi-khoi herders in southern Africa [30] and the southern
Bantu spread in East Africa [27]. For both case studies (Khoi-khoi and southern
Bantu), the lower bounds (1.2 km/year and 1.3 km/year, respectively) are close
to 1 km/year, so they also agree with the first law.

3. Third law. Neolithic spread rates over the sea take place at about 10 km/year. Such
very fast speeds have been observed in the spread of the Neolithic in the western
Mediterranean [31] and Austronesia [32]. More case studies are necessary to
determine a range of speeds for Neolithic rates when sea travel is involved. For
example, in the eastern Mediterranean the Neolithic spread rate has apparently
never been quantified by linear regression.

4. Fourth law. Most inland and coastal Neolithic spreads are mainly demic. The only
examples known up to now that might be perhaps mainly cultural are the spread
of maize in America [33] and the expansion of Khoi-khoi herders in southern
Africa [30]. Anyway, the fourth law is valid for all 13 case studies of farmers
listed in the first law, as well as for the coastal spread of the Neolithic along the
western Mediterranean [31].

5. Fifth law. The Neolithic tends to spread more slowly at higher latitudes. This
law is supported by a well-known slowdown in northern continental Europe
(Fig. 16.4b) and, as mentioned above, by a study on the spread of the Neolithic
in Scandinavia. In the latter case, it has been noted that the slowness may be
due to a small value of the growth rate α, which was estimated directly from
archeological data [21]. A low growth rate is perhaps not very surprising, given
the fact that in modern human populations reproduction is also known to decrease
with increasing latitude [34]. However, it is not yet established by archeological
data if the slowness at higher latitudes is (always) due to reduced values of the
growth rate or not, so the statement above of the fifth law does not include any
explanation for the slowness. The upper bound for the spread rate in Scandinavia
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(0.84 km/year) is close to 1 km/year, so this case study also agrees with the first
law.

6. Sixth law. The Neolithic spreads later and more slowly at higher altitudes above
sea level (compared to surrounding regions). This is clearly suggested by the
following results. An interpolation has shown that the Neolithic first surrounded
the Alps completely and only later began to climb up these mountains (Fig. 16.1).
It did so from all directions (Fig. 2 in Ref. 1) and at clearly slower speeds
(Figs. 16.1 and 16.4b).

16.6 Conclusions

The models reviewed in this chapter suggest that the spread of the Neolithic in
Europe was (i) fast and mainly demic in the Balkans and Central Europe; (ii) slow
and perhaps mainly cultural in Northern Europe, the Alpine region, and west of the
Black Sea (Fig. 16.4b) [1]. As seen in Fig. 16.4b, the process was fast (speeds
above 0.68 km/year) in Greece, Italy, the Balkans, Hungary, Slovakia, Czechia, and
central Germany. This wide region includes a substantial part of the Linearband-
kermic (LBK) culture in Central Europe. This is in agreement with the fact that
the LBK is widely regarded as demic by archeologists. Also in agreement with our
results, some archeologists have argued for the importance of demic diffusion in
the Neolithic spread from the Aegean northwards and across the Balkans. On the
other hand, in Northern Europe, the Alps, and West of the Black Sea (red color in
Fig. 16.4b), the transition was slow (speeds below 0.66 km/year) and, according to
our models, possibly not driven by demic neither demic-cultural diffusion. Some
archeologists have previously suggested that cultural diffusion had a strong role in
the spread of the Neolithic in Northern Europe, the Alps, and West of the Black sea.
Note that these are the possibly cultural diffusion regions according to our models
(red color in Fig. 16.4b). For detailed archeological references on the importance
of demic and cultural diffusion in different regions of Europe, see, e.g., Sect. 3 in
Ref. [1]. Ancient genetics also indicates that cultural diffusion was more important
in Northern Europe [35]. But it is worth to note that those ancient genetic data were
obtained in Latvia and Ukraine, outside Fig. 16.4. Moreover, we have stressed that
non-homogeneous reproduction (still to be confirmed or refused using archeological
data) could provide an alternative (mainly demic) explanation for the slow areas (red
color in Fig. 16.4b).

The slowness of cultural diffusion (as compared to demic diffusion) is due to
the fact that, according to ethnographic observations, the distances appearing in the
cultural kernelφ

′
P(�′

x ,�
′
y) are substantially shorter than those appearing in the demic

kernel φN (�x ,�y) [1]. The intuitive reason may be that agriculture is a difficult
cultural trait to learn, and this leads to shorter cultural than demic diffusion distances.
Note that the cultural distances are defined as those separating hunter-gatherers from
the farmers who teach them how to farm. Indeed, according to ethnographic data, in
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Fig. 16.4 Isochrones obtained by smoothing 40 times the map in Fig. 16.1 (a). Note that most
anomalously old/recent areas have disappeared. Smoothing 60 times yields almost the same map.
b Displays the speed ranges obtained from (a). Closer isochrones correspond to slower speeds.
Adapted from Ref. [1], Supp. Info. Appendix, Fig. S4

the spread of farming cultural diffusion distances were short as compared to demic
diffusion distances [1]. The latter are those along which the children of farmers
disperse away from their parents. Such demic distances can obviously be larger than
cultural distances, because the children of farmers have already learnt agriculture
before leaving their parents.

Models similar to those summarized here have been applied to Paleolithic waves
of advance [36], language substitution fronts [37], etc.
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All models considered in this chapter operate with a minimum of parameters.
In the demic model, for instance, the only parameters are the initial growth rate α,
the generation T, and the dispersal kernel. Crucially, all three have been estimated
from ethnographic or archeological data. With such constraints one is able to largely
avoid any unjustified bias in modeling which may easily occur by the use of too many
parameters which, finally, degenerate to simple fitting parameters. Using many free
parameters, it often turns out that the observed data can be reproduced but the model
is based on wrong premises. For example, in some models of virus infection fronts,
it was possible to reproduce some experimental front speeds by choosing several
parameter values [38, 39]. However, this was not possible for realistic parameter
values [39, 40]. Later, different models reproduced the data without choosing any
parameter values [41]. Thus, the old models were not appropriate (and missed crucial
aspects) because they agree with only some of the data, by using non-realistic equa-
tions and parameter values. Again, in the case of Neolithic spread, we have to be
aware that one may introduce very large parameter sets as demonstrated in Chap. 17.
But there, most of the eight parameter values used are chosen (not derived from
independent data) to replicate the observed arrival times of the Neolithic at several
regions (this is clearly stated in Ref. [6], p. 3462, and summarized here in Table
17.2 and Fig. 17.6). Thus, their parameter values become questionable with the lack
of possibilities for their determination from reliable, independent sources. Besides
the parameter values, there are also hypothetical assumptions in some models (e.g.,
Fig. 17.3). Using as few as possible untested assumptions and unknown parameters
in the models often makes them more realistic (we stress that a very clear example
is that of virus infection fronts).

Recently, the author has suggested some general laws of Neolithic spread around
the world (last part of Sect. 16.5). It is worth to mention that ancient genetic data can
be used to constrain better the models by, e.g., estimating the cultural transmission
intensity C [42]. In the future, surely many more archeological and genetic data will
become available and lead to further conclusions.
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