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Bancells & Fort, Cultural versus demic diffusion in agricultural expansions according to three definitions of dispersal distances 

Supporting Information 
S1. Uncertainty analysis of the parameter values 

In this section we estimate the generation time 𝑇 and the initial growth rate 𝑎 using 
ethnographic data. 

S1a. Generation time 𝑻 

 For a given population, consider a sample of 𝑛 parent-child pairs and let 𝑇  stand 
for the generation time of pair 𝑖 = 1,2, … , 𝑛. The mean generation time of the sample is  

𝑇 =
∑

,                     (1) 

and its standard deviation is [1] 

𝜎 =
∑ ( )

√
= √𝑉𝑎𝑟,         (2) 

where 𝑉𝑎𝑟 is called the variance. Equation (2) refers to the distribution of the original 
data. In order to estimate the error of the mean (1), statistical theory also considers the 
distribution of the means, i.e., of values of 𝑇 such that each value is the mean over a 
different sample of 𝑛 pairs drawn from the original population. According to well-known 
theorems [1], (i) the mean of the distribution of means is the same as the mean of the 
distribution of the original data, Eq. (1); (ii) the standard deviation of the distribution of 
means is1 

𝜎 =
√

  ,          (3) 

where 𝜎  is the standard deviation of the original data, Eq. (2). If the original distribution 
of 𝑇 values has an approximately normal (i.e., Gaussian) distribution and 𝑛 ≥ 30, the 
error ∆𝑇 in the average generation time 𝑇 with 95% confidence level (CL) is [1] 

∆𝑇 = 𝑧 .  𝜎   ,              (4) 

where 𝑧 . = 1.96 is the value of 𝑧 for which the standard normal distribution 𝑓(𝑧) has 
probability 95% (i.e., the area under the curve is 0.95) [1]. Thus with 95% CL, the range 
of the mean is (𝑇 − ∆𝑇, 𝑇 + ∆𝑇). It is important to keep in mind that, in contrast to Eq. 

                                                           
1 It is easy to proof these theorems, i.e., to derive the mean and the standard deviation (3) by noting that 𝑇  takes different values for 
different samples, but its mean and variance will be the same as those of 𝑇 , 𝑇 , etc. Thus the expected value of the mean is 𝐸(𝑇) =

𝐸
∑

= ∑ 𝐸(𝑇 ) = ∑ 𝑇 = 𝑛𝑇 = 𝑇 and the standard deviation of the mean is 𝜎 = 𝑉𝑎𝑟(𝑇) = 𝑉𝑎𝑟
∑

=

∑ 𝑉𝑎𝑟(𝑇 ) = ∑ 𝜎 = 𝑛 𝜎 = , where we have applied that the variances of any random variables x,y satisfy that 

𝑉𝑎𝑟(𝑐𝑜𝑛𝑠𝑡 · 𝑥) = 𝑐𝑜𝑛𝑠𝑡  𝑉𝑎𝑟(𝑥) and, if x and y are independent, 𝑉𝑎𝑟(𝑥 + 𝑦) = 𝑉𝑎𝑟(𝑥) +  𝑉𝑎𝑟(𝑦). 
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(2), Eqs. (3)-(4) refer to the distribution of the mean 𝑇 and not to that of the original 
variable 𝑇 [1] 2.  

 Next we apply this approach to the pre-industrial populations for which we have 
found data for the generation time 𝑇. It is useful to keep in mind that the generation time 
𝑇 (age of a parent when a child is born) has to be considered for all children (not only for 
the first one) because all of them have an effect on the propagation of the population front 
[2]. 

Population 1. Yanomamö 

 In our excel supplementary file (table S5) we include the generation times of 
𝑛 =258 parent-child pairs, which we have obtained from the same census that we have 
used to find out distances in our main paper [3]. Using Eqs. (1)-(4) we find that the mean 
is 𝑇 = 28.1yr and the standard deviation of the sample is 𝜎 = 9.5 yr, so the 95% error is 
∆𝑇 = 1.2 yr and the 95% CL for the mean is 

(𝑇 − ∆𝑇, 𝑇 + ∆𝑇) = (26.9 − 29.3) yr.    (5) 

Population 2. Majangir 

 For this pre-industrial population of farmers in Ethiopia, an histogram with 4 bins 
and 96 data reported in Ref. [4], p. 58, table 5 has been used to estimate that 44 parent-
child pairs had 𝑇 = 27 yr, 49 pairs 𝑇 = 35.5 yr, 2 pairs 𝑇 = 45.5 yr and 1 pair 𝑇 =

55.5 yr [2]. Then the mean generation time given by Eq. (1) is 𝑇 =32.0 yr and Eq. (2) 
yields for the standard deviation 𝜎 = 0.53 yr. This is substantially smaller than that for 
population 1, due to the fact that two contiguous bins in the histogram concentrate 97% 
of the data. For this reason, Eqs. (3)-(4) also lead to a much smaller 95% CL error for the 
mean, namely ∆𝑇 = 0.1 yr and therefore 

(𝑇 − ∆𝑇, 𝑇 + ∆𝑇) = (31.9 − 32.1) yr.    (6) 

For population 3 below, we will also find a rather small value of ∆𝑇 compared to that for 
population 1. 

 Population 3. Parma 

 In year 1967 Cavalli-Sforza and Zei [5] reported means and variances of 
generation times calculated for marriages in the high Parma valley (Italy). These data 
refer to rural populations and were obtained from parish books spanning the last 3 
centuries. The raw data are not available and they published the mean and variance 
separately for mothers (m) and fathers (f). In order to find out the standard deviation 𝜎 
for the complete sample, we write 

                                                           
2 Equation (3) implies that 𝜎 < 𝜎, i.e., the distribution of the mean 𝑇 is always narrower than that of the original variable 𝑇. Thus 
the 95% CL interval given by Eq. (4), which contains 95% of the values of 𝑇, does not contain 95% of the 𝑛 original values of 𝑇. 
According to Eqs. (3)-(4), the mean 𝑇 has a lower error ∆𝑇 the higher the value of the number of data 𝑛 over which it is calculated, 
as we should expect intuitively. 
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𝜎 = √𝑉𝑎𝑟 ,          (7) 

where, following Eq. (2),  𝑉𝑎𝑟 =
∑ ( )

 is the variance of the sample. We separate it 

into two contributions due to the 𝑛  mother-child pairs and 𝑛  father-child pairs, 

𝑉𝑎𝑟 =
∑ ( )

=
∑ ( ) ∑ ( )

 .             (8) 

Let 𝑇  stand for the mean of the generation times of mother-child pairs, and 𝑇  for that 

of father-child pairs. The first term in the numerator can be written as 

∑ (𝑇 − 𝑇) = ∑ (𝑇 − 𝑇 + 𝑇 − 𝑇) = ∑ (𝑇 − 𝑇 ) + ∑ (𝑇 − 𝑇) + 2( 𝑇 − 𝑇) ∑ (𝑇 − 𝑇 ). (9) 

The last term cancels out because ∑ (𝑇 − 𝑇 ) = 𝑛 𝑇 − 𝑛 𝑇 = 0. By repeating the 
same procedure for the second term in (8) and using Eqs. (2) and (7), we find 

𝑉𝑎𝑟 =
( ) ( ) ( )

 ,        (10) 

where 𝑉𝑎𝑟 =
∑ (𝑇𝑖−𝑇𝑚)

2𝑛𝑚
𝑖=1

𝑛𝑚
 is the variance of mother-child pairs, 𝑉𝑎𝑟 =

∑ (𝑇𝑖−𝑇𝑓)
2𝑛𝑓

𝑖=1

𝑛𝑓
 is the 

variance of father-child pairs, and the total number of pairs is 𝑛 = 𝑛𝑚 + 𝑛𝑓. 

 For the population studied by Cavalli-Sforza and Zei [5] 𝑇 = 30.9 yr, 𝑉𝑎𝑟 =

42.6 yr, 𝑛 = 1000, 𝑇 = 36.1 yr, 𝑉𝑎𝑟 = 53.3 yr and 𝑛 = 1000. Therefore 𝑇 =
. .

= 33.5 yr and using these values into Eq. (10) yields 𝑉𝑎𝑟 = 54.69 yr and 𝜎 =

√𝑉𝑎𝑟 = 7.4 yr. Using Eqs. (3)-(4), we find that ∆𝑇 = 0.3 yr so the 95% CL range for the 
mean is 

(𝑇 − ∆𝑇, 𝑇 + ∆𝑇) = (33.2 − 33.8) yr    (11) 

Population 4. Catalonia 

 We have used a book with genealogical trees of rural populations [6] and collected 
474 parent-child pairs such that the parent was born before year 1,700 AD in Catalonia 
(present-day northeastern Spain and southeastern France). The oldest parent was born in 
year 1,295, so this database spans 4 centuries. We include the database and additional 
comments as table S6 in our excel supplementary file. Using Eqs. (1)-(4) we find that the 
mean is 𝑇 = 32.8 yr and the standard deviation of the sample is 𝜎 = 8.6 yr, so the 95% 
error is ∆𝑇 = 0.8 yr and the 95% CL for the mean is 

(𝑇 − ∆𝑇, 𝑇 + ∆𝑇) = (32.0 − 33.6) yr    (12) 

Overall range 

 Next we will combine the results for the 4 populations above to derive an overall 
range for the generation time 𝑇. This is necessary to calculate front speeds (Figs. 2-4 in 
the main paper).  
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 Firstly it is interesting to consider, for each of the 4 populations, the Gaussian 
distribution with the same mean 𝑇 and standard deviation 𝜎 as the corresponding sample 
(as estimated above). Figure S1 shows an example (population 4), and we see that the 
histogram of the original data is approximately Gaussian. This justifies the use of Eq. (4) 
for the 4 individual populations, as done above.  
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Fig. S1. Histogram of the generation time 𝑇 for population 4 (Catalonia) and Gaussian distribution (dotted line) with the same mean 
(𝑇 = 32.8 yr ) and average (𝜎 = 8.6 yr) as the histogram. 
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Fig. S2. Gaussian distributions of 𝑇 for the 4 populations considered and total distribution (full line). The latter is the sum of the 4 
distributions divided by 4 to ensure normality (i.e., that the area below the full curve is 1). The dotted line is the same as in Fig. S1. 
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 In Fig. S2 we plot the sum of the four distributions3 (divided by 4 to ensure 
normality) as a full line. In order to find out its mean and standard deviation, we consider 
the total distribution of generation times 𝑇 (full line in Fig. S2) 

𝑓 (𝑇) =
( ) ( ) ( ) ( )

,    (13) 

where 𝑓 (𝑇) is the distribution for population i (as also plotted in Fig. S2). The mean of 
𝑓 (𝑇) is 

𝑇 = ∫ 𝑇 𝑓 (𝑇) 𝑑𝑇 = ∑ ∫ 𝑇 𝑓 (𝑇) 𝑑𝑇 =   .             (14) 

Using the results above for the 4 populations, i.e., 𝑇 = 28.1 yr, 𝑇 =32.0 yr, 𝑇 =

33.5 yr and 𝑇 = 32.8 yr, we find that 

𝑇 =  31.6 yr.     (15) 

The standard deviation of 𝑓 (𝑇) is 𝜎 = 𝑉𝑎𝑟  , and the variance of 𝑓 (𝑇) 

is found from its definition [1] and Eq. (13), 

𝑉𝑎𝑟 = (𝑇 − 𝑇 )  𝑓 (𝑇) 𝑑𝑇 =
1

4
(𝑇 − 𝑇 )  𝑓 (𝑇) 𝑑𝑇 = 

1

4
(𝑇 − 𝑇 + 𝑇 − 𝑇 )  𝑓 (𝑇) 𝑑𝑇 =                      

1

4
(𝑇 − 𝑇 )  𝑓 (𝑇) 𝑑𝑇 + (𝑇 − 𝑇 )  𝑓 (𝑇) 𝑑𝑇 + 2(𝑇 − 𝑇 )(𝑇 − 𝑇 ) 𝑓 (𝑇) 𝑑𝑇 = 

               
1

4
𝑉𝑎𝑟 +  (𝑇 − 𝑇 ) + 2(𝑇 − 𝑇 )  (𝑇 − 𝑇 )𝑓 (𝑇) 𝑑𝑇 , (16) 

where we have applied the normalization of probability, i.e., ∫  𝑓 (𝑇) 𝑑𝑇 = 1. The last 

term vanishes because ∫  𝑇𝑓 (𝑇) 𝑑𝑇 = 𝑇 , as already applied in Eq. (14). Therefore 

𝑉𝑎𝑟 =
1

4
[𝑉𝑎𝑟 +  (𝑇𝑖 − 𝑇 )2] =

1

4
𝑉𝑎𝑟 + 𝑇𝑖

2
+ 𝑇

2
− 2𝑇𝑖𝑇  =

4

𝑖=1

4

𝑖=1

 

                                                           
3 All of the 4 original distributions clearly overlap (Fig. S2). However not all of the 4 ranges (5), (6), (11) and (12) overlap, because 
these refer to the distribution of the mean 𝑇 and its standard deviation 𝜎 . The reason is that, as mentioned above, Eqs. (3)-(4) 
correspond to the distribution of the mean 𝑇 and not to the distribution of the generation time 𝑇 [1]. 
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𝑇 − 2𝑇
1

4
𝑇 +

1

4
[𝑉𝑎𝑟 + 𝑇  ].                                    (17) 

Using Eq. (14), 

                           𝑉𝑎𝑟 = 𝑇 − 2 𝑇 +
1

4
[𝑉𝑎𝑟 + 𝑇  ],                               (18) 

and the standard deviation of the total distribution of 𝑇 is finally 𝜎  = 𝑉𝑎𝑟  , 

i.e. 

                                   𝜎  =
1

4
[𝜎 + 𝑇  ] − 𝑇   .                                            (19) 

Using the results above for the 4 populations, i.e., 𝑇 = 28.1yr, 𝑇 =32.0 yr, 𝑇 =

33.5 yr, 𝑇 = 32.8 yr, 𝜎 = 9.5 yr, 𝜎 = 0.53 yr, 𝜎 = 7.4 yr and 𝜎 = 8.6 yr, we find 
that the standard deviation of 𝑇 is 

𝜎  = 7.7 yr.              (20) 

This implies that 95% of the area below the total distribution (full line in Fig. S2) is 
comprised between 𝑇 − 1.96 𝜎  and 𝑇 − 1.96 𝜎  [1], i.e., between 17 yr 
and 47 yr, which agrees well with Fig. S2.  

 So far we have found the mean and the standard deviation of the total distribution 
of the generation time 𝑇. In order to find out the error of the mean, we need to consider 
the probability distribution function of the mean 𝑇. According to Eq. (19), the standard 
deviation of the distribution of the mean 𝑇 is  

                                     𝜎  =
1

4
[𝜎 + 𝑇  ] − 𝑇   ,                                        (21) 

where the standard deviation of each mean is given by Eq. (3) as 

𝜎 =               (22) 

and using the number of observed values for each population above, i.e., 𝑛 =258, 𝑛 =

96, 𝑛 = 2,000 and 𝑛 = 474, we find that 

                                     𝜎  = 2.09 yr .                                                           (23) 

As explained at the beginning of this subsection, if 𝑛 ≥ 30 it would be justified to apply 
Eqs. (3)-(4), i.e.  
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∆𝑇 =  𝑧 .     

√
.       (24) 

However, in our case 𝑛 = 4 because we have estimated the mean in Eq. (14) by using 4 
values4. Since 𝑛 < 30, Eq. (24) should be replaced by the more precise formula [1] 

∆𝑇 = 𝑡 .     

√
,                   (25) 

where 𝑡 .  is the value of 𝑡 for which Student's t distribution with 𝑛 − 1 degrees of 
freedom has probability 95% (i.e., the area under the corresponding curve is 0.95)5. In 
our case 𝑛 = 4, therefore 𝑡 .  = 𝑡 . =3.18 [1] and we find using also Eq. (23) that 

 ∆𝑇 = 3.3  yr.                (26) 

Thus finally the 95% CL for the mean of the total distribution is 

(𝑇 − ∆𝑇 , 𝑇 + ∆𝑇 ) = (28 − 35) yr.             (27) 

This is the range that we have used to obtain Figs. 3-5 in the main paper. It seems 
reasonable intuitively because it is very similar to the interval implied by the minimum 
and maximum values of the ranges for the 4 means (5), (6), (11) and (12), namely 27-34 
yr. However the latter interval is just an intuitive guess. For example, it does not take into 
account that three of the four distributions have larger overall values of 𝑇 than the other 
one (Fig. S2). Therefore, we prefer to use the interval (27) that has been obtained 
according to statistical theory. 

 Note that if we disregard the uncertainty within each population, Eq. (21) reads 

𝜎  = ∑ [𝜎 + 𝑇  ] − 𝑇   ≈ ∑ 𝑇 − 𝑇 = 2.09 yr       (28) 

and this is (almost) the same as the more precise result (23)6. This means that the 
important contribution to the total uncertainty comes from the differences between the 
values of 𝑇 , not from the uncertainties in each of the 4 values of 𝑇 . This is not surprising 
if we note that the latter uncertainties (∆𝑇 = 1.2 yr, ∆𝑇 = 0.1 yr, ∆𝑇 = 0.3 yr and 
∆𝑇 = 0.8 yr) are much smaller than some differences between the values of 𝑇  in our 
populations (e.g., 𝑇 − 𝑇 ≈ 5 yr). This is why considering only one population (e.g., 
∆𝑇 = 1.2 yr) would seriously underestimate the total error (26). Thus our statistical 

                                                           
4 Each mean is given by Eq. (14) for 4 populations drawn from a large set of different human populations. This is analogous to the 
fact that for Eq. (1) each value of 𝑇  is drawn from a large set of values of 𝑇. 
5 Equation (24) can be applied if the distribution from which the original sample is drawn has an approximately Gaussian distribution. 
For 𝑛 < 30 this is difficult to check and Eq. (25) is used instead of (4), which leads to larger errors due to this uncertainty in the shape 
of the original distribution. For large values of 𝑛 𝑡 .  tends to 𝑧 . = 1.96, so Eqs. (25) and (24) are the same. 

6 The result (28) can be also found from Eq. (2), i.e., 𝜎 =
∑ ( )

√
=

∑ ( )

√
= 2.26 yr. Here we have used √𝑛 rather 

than √𝑛 − 1 in the denominator because usually this correction is not applied for continuous distributions, and this is why the first 
equality in Eq. (17) neglecting the uncertainty within each population (𝑉𝑎𝑟 ≈ 0) is the same as Eq. (2) with 𝑛 instead of 𝑛 − 1, i.e. 4 

instead of 3. In fact using Eq. (2) without replacing √𝑛 − 1 by √𝑛 would lead to essentially the same result (28-35 yr). 
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analysis also leads us to the important conclusion that combining data from several 
populations is of utmost importance.  

 

S1b. Initial growth rate 𝒂 

 Similarly to what we have done in the previous subsection for the generation time 
𝑇, here we consider all populations for which we know data useful to perform statistically-
sound estimations of the initial growth rate 𝑎, and then combine their results into an 
overall range. It is important to keep in mind that we can estimate the value of 𝑎 only if 
we have data for small population numbers (compared to the saturation density), so that 
the population grows exponentially. The reason is that in general, biological populations 
reproduce according to the logistic equation,  

=  𝑎 𝑁 1 − ,     (29) 

where 𝑁 is the population number, 𝑡 the time and 𝑁  the carrying capacity. If 
𝑁 ≪ 𝑁  then 

≈  𝑎 𝑁      (30) 

so the population grows exponentially,  

𝑁 ≈ 𝑁 𝑒 ,      (31) 

where 𝑁  is the initial population number. Thus if we have data of the population number 
(number of individuals) versus time and they are consistent with an exponential increase 
of the population, by fitting Eq. (31) to the data we can estimate the initial growth rate 𝑎. 
We have found useful data for the following 5 populations. 

Population A. Pitcairn 

 Pitcairn is a Polynesian island situated about halfway between Australia and Chile. 
Birdsell [7] reported that the Pitcairn colony started in 1790 with 6 English men and 8 
Polynesian women, and that cultivation was based on Polynesian tubers and fruits. The 
island remained essentially isolated, receiving very few immigrants until 1856. In Fig. S3 
we reproduce the data in Ref. [7] and the exponential fit. It has exponent (initial growth 
rate) 𝑎 = 0.03744 yr  and its standard deviation is 𝜎 = 0.00149 yr .  

 The 95% CL interval for the initial growth rate is [1] 

∆𝑎 = 𝑡 .   
√

  ,                     (32) 

where 𝑡 .  is the value of 𝑡 for which Student's t distribution with 𝑛 − 2 degrees of 
freedom has probability 95% (i.e., area below the curve equal to 0.95). Thus with 95% 
CL, the range of 𝑎 is (𝑎 − ∆𝑎, 𝑎 + ∆𝑎).   
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Fig. S3. Population number versus time and exponential fit for population A (Pitcairn island). 

 For the population of Pitcairn island the number of data points (Fig. S3) is 𝑛 =

19, so 𝑡 . = 𝑡 . = 2.11 [1] and using the values of 𝑎 and 𝜎  above into Eq. (32) we 
find that 𝑎 = (0.03744 ± 0.00211) yr , so the 95% CL interval for the initial growth 
rate is 

(𝑎 − ∆𝑎, 𝑎 + ∆𝑎) = (0.035 − 0.039) yr .    (33) 

 

Population B. Bass Strait islands 

 These islands are located between Australia and Tasmania. Birdsell [7] reported 
population data beginning in year 1820 with 16 people, and mentioned that the economy 
was based on hunting, seafood, cultivation and domestic animals. In Fig. S4 we reproduce 
the data (𝑛 = 19) from Ref. [7] and the exponential fit. It has exponent (initial growth 
rate) 𝑎 = 0.02626 yr  and its standard deviation is 𝜎 = 0.00052 yr . Using these 
values in Eq. (32) yields 𝑎 = (0.02626 ± 0.00110) yr , so the 95% CL range for the 
initial growth rate is 

(𝑎 − ∆𝑎, 𝑎 + ∆𝑎) = (0.025 − 0.027) yr .    (34) 
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Fig. S4. Population number versus time and exponential fit for population B (Bass Strait islands). 

 

Population C. United States of America 

 Lotka [8] published population data of the U.S.A. since 1790 when there were 
3.29 millions of individuals until 1910 when the population had grown to 91.97 million. 
We include those data in Fig. S5 (𝑛 = 13), together with our exponential fit. It has 
exponent (initial growth rate) 𝑎 = 0.02326 yr  and its standard deviation is 𝜎 =

 0.00071 yr . Using these values and 𝑡 . = 𝑡 . = 2.20 [1] into Eq. (32) yields 𝑎 =

(0.02326 ± 0.00156) yr , so the 95% CL range for the initial growth rate is 

(𝑎 − ∆𝑎, 𝑎 + ∆𝑎) = (0.022 − 0.025) yr .    (35) 
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Fig. S5. Population number versus time and exponential fit for population B (United States of America). 
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Population D. Tristan da Cunha 

 This remote group of 5 small volcanic islands is located in the middle of the 
Atlantic Ocean (at less latitude than the tip of southern Africa) but only the largest island 
has been inhabited by humans, with a potato crop, cattle and fish as staple foods [7]. 
Roberts published population number data as a function of time [9]. Two brief periods of 
growth ended abruptly, and a third one begun in 1891 with 59 individuals. Its population 
numbers are reproduced in Fig. S6 (𝑛 = 38), together with the exponential fit. It has 
exponent 𝑎 = 0.02579 yr  and its standard deviation is 𝜎 = 0.00033 yr . Using Eq. 

(32) with these values and 𝑡 . = 𝑡 . = 2.03 [1] yields 𝑎 = (0.02579 ± 0.00067) 
yr , so the 95% CL range for the initial growth rate is 

(𝑎 − ∆𝑎, 𝑎 + ∆𝑎) = (0.025 − 0.026) yr .    (36) 
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Fig. S6. Population number versus time and exponential fit for population D (Tristan da Cunha). 

 

Population E. St. Lawrence valley 

This region in present-day Canada had no sedentary population and was used for fishing 
and hunting until the seventeenth century, when European farmers arrived and gradually 
established new parishes along the banks of the St. Lawrence river. Charbonneau et al. 
reported population numbers since 1652 until 1803 [10]. Those data are shown Fig. S7 
(𝑛 = 31), together with our exponential fit. It has exponent 𝑎 = 0.02433 yr  and its 

standard deviation is 𝜎 = 0.00022 yr . Using Eq. (32) with these values and 𝑡 . =
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𝑡 . = 2.04 [1] yields 𝑎 = (0.02433 ± 0.00044) yr , so the 95% CL range for the 
initial growth rate is 

(𝑎 − ∆𝑎, 𝑎 + ∆𝑎) = (0.024 − 0.025) yr .    (37) 
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Fig. S7. Population number versus time and exponential fit for population E (St. Lawrence valley). 

 

Overall range 

 Let us combine the results for the 5 populations above to derive an overall range 
for the initial growth rate 𝑎. This is necessary to calculate front speeds (Figs. 2-4 in the 
main paper). Analogously to Eq. (13), the total probability distribution function of 𝑎 is 
the sum of the 5 probability distribution functions considered above. Analogously to Eq. 
(14), the average of the total distribution is  

  𝑎 = = 0.02742 yr ,    (38) 

where we have used the results above for the 5 populations, namely 𝑎 = 0.03744 yr , 
𝑎 = 0.02626 yr , 𝑎 = 0.02326 yr , 𝑎 = 0.02579 yr   and 𝑎 = 0.02433 yr . 
The standard deviation is, analogously to Eq. (19), 

𝜎  = − 𝑎 =  0.00519 yr ,        (39) 
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where we have used the results for the standard deviations above, namely 𝜎 = 0.00149 
yr , 𝜎 = 0.00052 yr , 𝜎 = 0.00071 yr , 𝜎 = 0.00033 yr  and 𝜎 = 0.00022 
yr . Analogously to Eq. (25), the error in the growth rate is 

∆𝑎 = 𝑡 .    

√
= 0.00645 yr ,             (40) 

where we have used that 𝑛 = 5 and 𝑡 . = 𝑡 . = 2.78. Thus finally the 95% CL for 
the mean of the total distribution is 

(𝑎 − ∆𝑎 , 𝑎 + ∆𝑎 ) = (0.021 − 0.034) yr .             (41) 

This is the range that we have used to obtain Figs. 3-5 in the main paper. It seems 
reasonable intuitively if we take into account that the minimum and maximum values of 
the ranges for the growth rates of the 5 populations (33)-(37) are 0.022 yr  and 
0.039 yr , respectively, but the latter corresponds to population A, which has a higher 
growth rate than the other four7.  

 Finally, if we disregard the uncertainty within each population Eq. (39) reads 

𝜎  ≈ − 𝑎 =  0.00512 yr ,              (42) 

and Eq. (40) leads to (0.021 − 0.034) yr , i.e., the same as the more precise result (39). 
This means that, also for the growth rate, the important contribution to the total 
uncertainty comes from the differences between the values of 𝑎 , not from the 
uncertainties in each of the 5 values of 𝑎 . This is not surprising if we note that the latter 
uncertainties (e.g., ∆𝑎 ≈ 0.002 yr ) are much smaller than some differences between 
the values of 𝑎  in our populations (e.g., 𝑎 − 𝑎 ≈ 0.011  yr ). This is why considering 
only one population (e.g., ∆𝑎 = 0.00211 yr ) would underestimate the total error (40). 
Thus, both for the growth rate (this subsection) and for the generation time (previous 
subsection), our statistical analysis leads us to the important conclusion that combining 
data from several populations is of utmost importance.  

                                                           
7 For the overall range of the generation time 𝑇, Eq. (27), this effect is less pronounced because we have 3 populations with ranges 
rather different than another one (population 1). In contrast, for initial growth rate 𝑎 we have 4 populations with ranges rather different 
than another one (population A) and this drives the overall range (41) further away from that of population A. 
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S2. Examples of application to other contexts 

Section 3.2 in the main paper considers contexts with observed spread rates different from 
that of the Neolithic in Europe. Here we include some figures that are quoted in that 
section and necessary to understand how some results in table 3 in the main paper have 
been obtained. 
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Fig. S8. The curves are the same as in Fig. 3a in the main paper because the same dispersal kernel (Yanomamö B) has been applied. 
However the context here is the Neolithic in the Balkans, so the hatched rectangle (observed spread rate) is different (1.2-2.1 km/yr 
here versus 0.9-1.3 in Fig. 3a). Thus the shape of the consistency region (black area) is different from that in Fig. 3a. But, again, 
consistency is attained for values of 𝜂 between  𝜂 = 0 and 𝜂  given by the intersection of the upper side of the hatched rectangle 
and the dashed curve. This yields 𝜂 = 6.23 from panel a and a maximum cultural effect of 49% from panel b, as reported in table 
3 in the main paper, row 'Yanomamö B'. 
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Fig. S9. The context (hatched rectangle) in panel a is the same as in Fig. S8 (the Neolithic in the Balkans, 1.2-2.1 km/yr) but the 
dispersal kernel used to calculate the curves here is that of the Majangir (Gilishi 20-29 yr). For this kernel the speeds are slower than 
in Fig. S8 and for this reason, the minimum calculated speed (dashed curve) does not cross the upper limit of the observed speed (2.1 
km/yr) so we cannot find any upper bound for 𝜂, i.e., 𝜂 = ∞ and panel b yields a maximum cultural effect of 49%, as reported in 
table 3 in the main paper, row 'Majangir R (Gilishi 20-29 yr). 
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Fig. S10. The context (hatched rectangle) in panel a is the same as in Figs. S8-S9 (the Neolithic in the Balkans, 1.2-2.1 km/yr) but the 
dispersal kernel used to calculate the curves here is that of the Issongos. For this kernel the speeds are so slow for 𝜂 = 0 that they do 
not cross the observed range (hatched rectangle). For this reason, the minimum value of 𝜂 is different from zero, namely 𝜂 = 0.48. 
However, in contrast with Fig. S9, the minimum speed (dashed curve in panel a here) crosses the upper limit for the observed speed 
(upper side of the hatched rectangle), so there is also a finite maximum value of 𝜂, namely 𝜂 = 27.79. Panel b yields the minimum 
and maximum cultural effects, namely 21% and 70%. These four results are reported in table 3 in the main paper, row 'Issongos M'. 
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S3. Computer code used to generate the figures 

This code runs in program mathematica and has been used to generate Fig. 3 (kernel B) 
in the main paper.  

Figures 4 (kernel R) and 5 (kernel M) have been obtained with the same code but using: 

· the corresponding number of distances, namely 159 for Fig. 4 (kernel R) and 97 for Fig. 
5 (kernel M), instead of 257 for Fig. 3 (kernel B),   

· the list of distances (in km) from table S2 (kernel R) for Fig. 4 and from table S3 (kernel 
M) for Fig. 5, instead of the list of distances from table S1 (kernel B) for Fig. 3. 

The same procedure has been used to obtain Fig. 2 in the main paper. 

 

  



This is the function to be minimized in Equation (3) in the main

paper (here we use aN rather than a for the initial growth rate of farmers) :
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I de Bessel
BesselI[0, lambda * r232] +

I de Bessel
BesselI[0, lambda * r233] +

I de Bessel
BesselI[0, lambda * r234] +

I de Bessel
BesselI[0, lambda * r235] +

[ * ] + [ * ] + [ * ] +



I de Bessel
[ * ] +

I de Bessel
[ * ] +

I de Bessel
[ * ] +

I de Bessel
BesselI[0, lambda * r236] +

I de Bessel
BesselI[0, lambda * r237] +

I de Bessel
BesselI[0, lambda * r238] +

I de Bessel
BesselI[0, lambda * r239] +

I de Bessel
BesselI[0, lambda * r240] +

I de Bessel
BesselI[0, lambda * r241] +

I de Bessel
BesselI[0, lambda * r242] +

I de Bessel
BesselI[0, lambda * r243] +

I de Bessel
BesselI[0, lambda * r244] +

I de Bessel
BesselI[0, lambda * r245] +

I de Bessel
BesselI[0, lambda * r246] +

I de Bessel
BesselI[0, lambda * r247] +

I de Bessel
BesselI[0, lambda * r248] +

I de Bessel
BesselI[0, lambda * r249] +

I de Bessel
BesselI[0, lambda * r250] +

I de Bessel
BesselI[0, lambda * r251] +

I de Bessel
BesselI[0, lambda * r252] +

I de Bessel
BesselI[0, lambda * r253] +

I de Bessel
BesselI[0, lambda * r254] +

I de Bessel
BesselI[0, lambda * r255] +

I de Bessel
BesselI[0, lambda * r256] +

I de Bessel
BesselI[0, lambda * r257])] / (lambda * T)

-----------

Distances from table S2 = kernel B (km) :

In[ ]:= r1 = 0;

r2 = 0;

r3 = 0;

r4 = 0;

r5 = 0;

r6 = 0;

r7 = 1.85;

r8 = 4.14;

r9 = 4.14;

r10 = 4.14;

r11 = 4.14;

r12 = 4.14;

r13 = 4.14;

r14 = 4.14;

r15 = 5.56;

r16 = 5.86;

r17 = 7.64;

r18 = 7.64;

r19 = 7.64;

r20 = 7.64;

r21 = 7.64;

r22 = 8.29;

r23 = 8.29;

r24 = 8.29;

r25 = 8.29;

r26 = 9.27;

r27 = 11.27;

r28 = 11.27;

r29 = 11.27;

r30 = 11.72;

r31 = 11.86;



r32 = 11.86;

r33 = 12.43;

r34 = 13.10;

r35 = 13.10;

r36 = 13.10;

r37 = 13.10;

r38 = 13.10;

r39 = 13.10;

r40 = 14.11;

r41 = 14.11;

r42 = 14.11;

r43 = 14.11;

r44 = 14.94;

r45 = 14.94;

r46 = 14.94;

r47 = 15.72;

r48 = 15.83;

r49 = 15.94;

r50 = 17.08;

r51 = 17.08;

r52 = 17.08;

r53 = 17.08;

r54 = 17.08;

r55 = 17.08;

r56 = 17.08;

r57 = 17.48;

r58 = 17.48;

r59 = 18.61;

r60 = 19.70;

r61 = 19.70;

r62 = 19.70;

r63 = 19.70;

r64 = 19.70;

r65 = 19.70;

r66 = 19.96;

r67 = 20.04;

r68 = 20.46;

r69 = 20.46;

r70 = 20.46;

r71 = 20.72;

r72 = 20.72;

r73 = 21.13;

r74 = 21.61;

r75 = 21.61;

r76 = 21.61;

r77 = 21.61;

r78 = 21.61;

r79 = 21.61;

r80 = 21.61;

r81 = 21.61;



r82 = 21.61;

r83 = 21.61;

r84 = 21.61;

r85 = 21.61;

r86 = 21.61;

r87 = 23.44;

r88 = 23.44;

r89 = 23.44;

r90 = 24.16;

r91 = 24.16;

r92 = 24.16;

r93 = 24.16;

r94 = 24.16;

r95 = 24.16;

r96 = 24.16;

r97 = 24.16;

r98 = 24.16;

r99 = 24.16;

r100 = 24.16;

r101 = 24.16;

r102 = 24.16;

r103 = 24.93;

r104 = 24.93;

r105 = 24.93;

r106 = 25.80;

r107 = 26.72;

r108 = 26.72;

r109 = 26.72;

r110 = 26.72;

r111 = 26.72;

r112 = 28.04;

r113 = 28.04;

r114 = 28.04;

r115 = 28.04;

r116 = 28.04;

r117 = 28.04;

r118 = 28.04;

r119 = 28.04;

r120 = 28.04;

r121 = 28.23;

r122 = 28.23;

r123 = 28.35;

r124 = 28.94;

r125 = 30.56;

r126 = 30.84;

r127 = 32.36;

r128 = 32.36;

r129 = 32.36;

r130 = 32.36;

r131 = 33.39;



r132 = 34.01;

r133 = 34.01;

r134 = 34.01;

r135 = 35.24;

r136 = 35.40;

r137 = 35.40;

r138 = 35.40;

r139 = 35.40;

r140 = 35.40;

r141 = 35.40;

r142 = 35.40;

r143 = 35.40;

r144 = 35.40;

r145 = 35.40;

r146 = 35.40;

r147 = 35.40;

r148 = 35.40;

r149 = 35.79;

r150 = 36.68;

r151 = 36.68;

r152 = 36.68;

r153 = 36.68;

r154 = 36.68;

r155 = 36.68;

r156 = 36.68;

r157 = 36.68;

r158 = 36.68;

r159 = 37.52;

r160 = 37.80;

r161 = 38.96;

r162 = 38.96;

r163 = 40.64;

r164 = 40.64;

r165 = 40.64;

r166 = 40.64;

r167 = 41.15;

r168 = 42.01;

r169 = 42.01;

r170 = 42.01;

r171 = 42.01;

r172 = 42.01;

r173 = 42.01;

r174 = 43.41;

r175 = 43.73;

r176 = 44.20;

r177 = 44.20;

r178 = 44.20;

r179 = 44.20;

r180 = 44.20;

r181 = 44.20;



r182 = 44.20;

r183 = 44.20;

r184 = 45.75;

r185 = 45.87;

r186 = 47.46;

r187 = 47.46;

r188 = 47.46;

r189 = 47.46;

r190 = 47.46;

r191 = 47.46;

r192 = 47.46;

r193 = 47.46;

r194 = 47.46;

r195 = 47.46;

r196 = 47.46;

r197 = 48.07;

r198 = 48.07;

r199 = 49.78;

r200 = 49.78;

r201 = 50.56;

r202 = 51.49;

r203 = 52.22;

r204 = 52.22;

r205 = 52.22;

r206 = 52.22;

r207 = 52.22;

r208 = 52.22;

r209 = 52.22;

r210 = 52.22;

r211 = 52.22;

r212 = 52.44;

r213 = 52.44;

r214 = 52.44;

r215 = 52.44;

r216 = 52.44;

r217 = 52.44;

r218 = 52.44;

r219 = 60.32;

r220 = 62.70;

r221 = 63.76;

r222 = 63.76;

r223 = 63.76;

r224 = 63.76;

r225 = 63.76;

r226 = 63.76;

r227 = 63.76;

r228 = 63.76;

r229 = 67.85;

r230 = 67.85;

r231 = 67.85;



r232 = 67.85;

r233 = 67.85;

r234 = 68.54;

r235 = 68.54;

r236 = 68.54;

r237 = 68.58;

r238 = 68.58;

r239 = 68.58;

r240 = 72.17;

r241 = 72.63;

r242 = 74.52;

r243 = 76.22;

r244 = 80.52;

r245 = 82.70;

r246 = 82.70;

r247 = 83.26;

r248 = 88.71;

r249 = 94.33;

r250 = 94.33;

r251 = 94.62;

r252 = 94.62;

r253 = 95.62;

r254 = 100.47;

r255 = 101.13;

r256 = 101.13;

r257 = 108.54

------------------

Minimum speed (dashed curve in Fig. 3 in the main paper),

i.e., maximum value of T and minimum value
of aN from the ranges in Section S1, (27) and (41) :

In[ ]:= T = 35; aN = 0.021

In[ ]:= eta = 0



In[ ]:=

representación gráfica
Plot[f, {lambda, 0.0375, 0.038} ]

Out[ ]=

0.0376 0.0377 0.0378 0.0379 0.0380

1.06339

1.06340

1.06340

1.06341

1.06341

1.06342

According to this plot, the minimum is :

1.0634 km / yr

This is the speed for eta = 0 (no cultural diffusion). It does not appear in Fig .3 a,

but it is needed to compute the cultural

effect (Fig. 3 b) for other values of eta, as done below.

----------------------

Maximum speed (full curve in Fig. 3 in the main paper),

i.e., minimum value of T and maximum value
of aN from the ranges in Section S1, (27) and (41) :

In[ ]:= T = 28; aN = 0.034

eta = 0

In[ ]:=

representación gráfica
Plot[f, {lambda, 0.0424, 0.0426} ]

Out[ ]=

0.04245 0.04250 0.04255 0.04260

1.52235

1.52235

1.52236

1.52236

1.52236

1.52236

1.52236

According to this plot, the minimum is :

1.5224 km / yr

This is the speed for eta = 0 (no cultural diffusion). It does not appear in Fig .3 a,

but it is needed to compute the cultural

effect (Fig. 3 b) for other values of eta, as done below.



------------------------

Minimum speed (dashed curve in Fig. 3 in the main paper),

i.e., maximum value of T and minimum value
of aN from the ranges in Section S1, (27) and (41) :

In[ ]:= T = 35; aN = 0.021

In[ ]:= eta = 0.001

In[ ]:=

representación gráfica
Plot[f, {lambda, 0.0375, 0.038} ]

Out[ ]=

0.0376 0.0377 0.0378 0.0379 0.0380

1.06415

1.06416

1.06417

1.06417

1.06417

1.06418

According to this plot, the minimum is :

1.0642 km / yr

This is the value in Fig. 3 a , dashed curve, for eta = 0.001 .

----------------------

Maximum speed (full curve in Fig. 3 in the main paper),

i.e., minimum value of T and maximum value
of aN from the ranges in Section S1, (27) and (41) :

In[ ]:= T = 28; aN = 0.034

In[ ]:= eta = 0.001



In[ ]:=

representación gráfica
Plot[f, {lambda, 0.0425, 0.0426} ]

Out[ ]=

0.04252 0.04254 0.04256 0.04258 0.04260

1.52319

1.52319

1.52319

According to this plot, the minimum is :

1.5232 km / yr

This is the value in Fig. 3 a, full curve, for eta = 0.001.

------------------------

The speeds in Fig. 3 a for the remainining values of eta are computed in the same way, e.g. :

Minimum speed (dashed curve in Fig. 3 in the main paper),

i.e., maximum value of T and minimum value
of aN from the ranges in Section S1, (27) and (41) :

In[ ]:= T = 35; aN = 0.021

In[ ]:= eta = 10000

representación gráfica
Plot[f, {lambda, 26, 26.5} ]

26.1 26.2 26.3 26.4 26.5

3.1006

3.1006

3.1006

3.1006

3.1006

According to this plot, the minimum is :

3.1006 km / yr

This is the value in Fig. 3 a , dashed curve, for eta = 10 000 .



CULTURAL EFFECT

Fig. 3 b in the main paper :
The corresponding cultural effect (in %) is, according to Eq. (5) in the main paper :

In[ ]:= 100 * (3.1006 - 1.0634) / 3.1006

Out[ ]= 65.7034

This is the value in Fig. 3 b , dashed curve, for eta = 10 000 .

----------------------

Maximum speed (full curve in Fig. 3),

i.e., minimum value of T and maximum value
of aN from the ranges in Section S1, (27) and (41) :

In[ ]:= T = 28; aN = 0.034

In[ ]:= eta = 10000

In[ ]:=

representación gráfica
Plot[f, {lambda, 40, 41} ]

Out[ ]=

40.2 40.4 40.6 40.8 41.0

3.87599

3.87599

3.87599

According to this plot, the minimum is :

3.8760 km / yr

This is the value in Fig. 3 a , full curve, for eta = 10 000 .

CULTURAL EFFECT

Fig. 3 b in the main paper :
The corresponding cultural effect (in %) is, according to Eq. (5) in the main paper :



In[ ]:= 100 * (3.8760 - 1.5224) / 3.8760

Out[ ]= 60.7224

This is the value in Fig. 3 b , full curve, for eta = 10 000 .

------------------------
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