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Abstract

A derivation of Young's equation based on the energy balance near the contact line is presented. Our proposal is rigorous and avoids th
errors identified in the usual local derivation. It is valid under very general conditions (for any geometry, in a gravitational field and for
compressive fluids). Deviations of the contact angle from Young's equation are discussed in several cases: surfaces of high curvature and lir
tension. Finally, the relationship between surface tensions and surface energies comes as an additional, natural result. Our derivation al:
provides a new physical insight into the equilibrium of forces acting near the contact line. Its local character makes the recourse to integra
analysis unnecessary, which results in a great simplification when compared to other general treatments.
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1. Introduction faces when compared to the bulk. From this point of view,
the shape of liquid surfaces is governed by the condition
As early as 1805, Thomas Young [1] stated that when a of minimum energy and, consequently, Young's equation
liquid makes contact with a solid surface it will approach the could be derived from this condition. In fact, this nonlo-
contact line following a dihedral anglé, that depends on  cal approach has been applied to special, elementary cases
the solid and liquid surfaces according to his famous equa- (such as drops in contact with solid surfaces in the absence
tion of gravity and thin capillaries [4] or the meniscus formed
on a vertical solid wall [5]) where the total energy can be
calculated analytically. In more general cases, where analyt-

whereo;; are called the “surface tensions” of the interfaces. ical solutions do not exist (e.g., drops under gravity [6] or
He argued that Eq. (1) reveals an equilibrium of “three forces menisci inside thick capillaries [7]), variational methods are
acting on the angular particles (of the liquid), one in the di- used or, alternatively, the energy is calculated numerically
rection of the surface of the fluid onlyy ), the second in  [6,8]. The conclusion is always the same: minimization of
that of the common surface of the solid and fluid,(), and ~ the total energy in any particular case leads to Young's equa-
the third in that of the exposed surface of the sotigh().” tion. In contrast with these particular situations, the analysis
In 1830, Gauss introduced the concept of surface energy and®y Gibbs is valid for any geometry and includes gravity
applied it to the phenomenon of capillarity [2]. However, it €Xplicitly. In fact, the scope of Gibbs’ work goes far be-
was several decades later (around 1880), when Gibbs [3] deyond the problem of the contact angle and, for this reason,
veloped the thermodynamics of solid—liquid—vapor systems Mmakes use of a formalism that results cumbersome when
very elegantly and, thus, founded the study of phenomenaone is interested in this particular subject. This is perhaps
related to surface tension on more solid ground. In particu- the reason that, aside from Johnson’s paper (see below), we
lar, he showed that surface tensions result from the excesdave not found Gibbs'’ derivation reproduced nor adapted by
free energy that can be assigned to the atoms at the sur@ny later author [9]. Instead, a local analysis is usually fol-

oLy COSY = osy — oL, (1)

lowed.
Let us briefly review the existing local derivation. From
* Corresponding author. the geometrical point of view, Young’s equation is a bound-
E-mail address: joaquim.fort@udg.es (J. Fort). ary condition on the liquid—vapor surface. Consequently, it
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R particular geometries under gravity. Perhaps the most cel-
‘ ebrated contribution was that by Johnson [18] which was
s considered at that time as correct [19,20] or even “defini-
tive” in the review of the subject by Zisman [21]. However,
Johnson followed the steps already outlined by Gibbs’ al-
most one century before and should therefore be considered
L an attempt to simplify Gibbs’ derivation [22]. This aim was
not fulfilled, it seems, because Johnson’s approach has not
050 been reproduced by any later author.
Despite its inherent problems (see Section 2), the geomet-
rical construction of Fig. 1 still survives [13,16] and contin-
\ ues raising doubts about the validity of Young’s equation.
! Several examples can illustrate these doubts. The recent de-
‘57’ S velopment of extensive numerical calculations has made it
possible to test Young'’s equation from first principles. Initial

SASL = [ 5X

Fig. 1. When the ||_qmd advances, the area of the LV surface will increase attempts that treated each of the phases in contact as a con-
by a value proportional to c@s provided that the new surface meets the

initial one asymptotically. This geometrical construction is the basis of the tinuu.m g_ave neQative results [23'24]- The interesting aspept

most popular “derivation” of Young’s equation. of this failure is that these authors did not conclude that their
method had some problems, but that Young’s equation was
erroneous [25]. Once again, one sees that although anyone

should be possible to derive it by quantifying the energy near Working in the field of surface phenomena will often deal
the contact line. The arguments of this local approach canWith contact angles, the equation governing their value at

be easily understood with the help of the geometrical con- €quilibrium is usually under suspicion. Which would other-
struction detailed in Fig. 1. Let correspond to equilibrium; ~ Wise be the reason for doing measurements of contact angles

therefore, the energy will not change up to first order af- during free fall [26] or for computing the energy of a drop
ter a slight increaseif, of the contact angle. According to ~ Under gravity [8]? At present there is a paper [27] where
the geometrical construction of Fig. 1, it is argued that this More elaborate simulations confirm Young's equation on a
perturbation induces a variation of the liquid—vapor surface Microscopic basis [28]. Finally, we should point out that di-

area,8 ALy, which is proportional to the liquid—soliglAs. rect experimental verificat?ons of Young’s (.aq_ua.tion are very
through scarce [29,30] because, in most cases, it is impossible to

measuress. and the determination afsy is usually prob-
8ALy =06Ag COSA. (2) lematic.

The main purpose of this paper is to present an original
and general derivation of Young’s equation, founded on ther-
modynamic grounds. The analysis is local, in the sense that
8Uy = oLvS8ALy + (osL — osv)8AsL the energy balance is applied to a small volume near the con-

tact line (local analysis). Despite that any displacement of
- [GLV cos0 + (o5t = GSV)](SASL' ) the contact line will produce energy changes in the rest of

In the absence of other contributions to the energy vari- the system (nonlocal perturbation), our method allows us to
ations (e.g., gravity), the equilibrium conditié® = 0 im- write down a rigorous local balance equation. In fact, to our
plies Young’s equation (1). Despite the easy criticism that knowledge it constitutes the single rigorous local derivation
can be addressed to this derivation (see Section 2), it hasof Young's equation (1). It is valid within a number of gen-
survived as the most popular general proof of Young's equa- eral, clearly stated hypotheses. In particular, it is shown that
tion. For instance, we find it in the textbook of physics by Young's equation is obeyed under gravity and for all geome-
Poynting and Thomson [10] and in the treatise of surface tries.
chemistry by Adamson [11]; Sommerfield [12] used it in the
case of a meniscus; etc. [13-16].

The correctness of this local derivation has been the sub-2. Criticism of the existing local derivation
ject of great debate, which from time to time has led sev-
eral authors to doubt the validity of Young’s equation itself. From the historical review in our Introduction, it follows
A good example of the confusion created around this sub- that the only general derivation of Young’s equation based on
ject is the discussions held during a conference devoted toa local analysis of the contact line is that illustrated by the
surface activity in 1957, where it was argued that Young’s geometrical construction of Fig. 1, and reproduced in Sec-
equation fails under gravity [17]. In order to test this hy- tion 1. In this section we will give some arguments (based
pothesis, several papers followed this conference which gaveon the energy balance of particular cases) that invalidate this
rigorous and valuable derivations [5,6] that apply, in fact, to local derivation.

This relationship allows the calculation of the energy in-
crements related to surfaces:
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2r
Fig. 2. Changes in the shape of a drop when the wetted surface area in- [~--~
creases.
) ASL =2nr Oh
2.1. Local status of the geometrical construction
The validity of the construction in Fig. 1 would be general - 4 -
(for any geometry without gravity) provided that its pre-

sumed local character were really local. That would be so,
if the energy variations near the contact line could be used Fig.'3. Ar_l increment of the height, of the column of liquid inside a thin
s capillary increases thég, area but leaves théy surface area unchanged.
to compute the energy variation of the whole system. In the
absence of gravity, only the surface energy varies. Conse- o i )
quently, the local derivation assumes that the variations of AN élémentary geometrical inspection of Fig. 2 leads to
the whole surface areas are equal to the local variatidipg
and§Asy shown in Fig. 1. In other words, beyond point B
in Fig. 1 the LV surface area should not change up to first
order indx. This point could be ensured if, as sketched in
F|g: 1, far enough from the contact Ilne, the LV SL_Jrfaces '®" cal factor near unity. Therefor#,, is not minimal but varies
mained unchanged [32]. However, this asymptotic behavior in first order of3As. and cannot be neglected in Eq. (4).
is not true in general. In the particular case of a drop (Fig. 2), Now, introduction of Eq. (2) and that forsU, above into
volume conservation obviously implies that the whole LV in- Eq. (5) would lead to the conclusion that Ygung's equation
terface is modified. We conclude that the local geometrical is not valid. However, precisely because Young's equation is
construction of Fig. 1 cannot be considered as a correct way,aiid in general [3] and in this particular case [6,8], it fol-
for computing the variations of the whole surface energies o from our argument that Eq. (2) is false under gravity.

and, therefore, it cannot be the basis of a rigorous derivationTnis makes it absolutely clear that the usual, widely quoted

of Yo_ung's equati_on. , ) L local proof of Young’s equation (Section 1) is not valid in
It is worth noting that, without gravity, minimization of general.

the total energy is equivalent &&/, = 0 and, therefore, the In general terms, we can then state that, and $U,

validity of Young’s equation ensures that the variations qf the gre coupled. Obviously, also this fact makes the geometrical

whole surface areas always follow Eq. (2). Thus, we arrive at ¢qnstryction of Fig. 1 of questionable applicability. This as-

the striking conclusion that, in the absence of gravity, from pect will become clearer below. We can say, in passing, that

Young's equation (1) (by introducing it into Eq. (3)) one can  gimytaneous consideration of Egs. (2) and (5) as valid led

derive Eq. (2) but the reverse is not true, because there is NOpethica and Pethica [17] and others [32] to conclude that the

a priori proof of Eq. (2). contact angle progressively deviates from the value given by
i Young’s equation when drops become large. This suggestion

2.2. Drop under gravity was later ruled out, both from numerical calculations based

on precise drop shapes [8] and experimentally [33].
Let us show that the problems with the geometrical con-

struction leading to Eq. (2) become still more apparent when 2.3, The geometrical construction under gravity

analyzing the case of a drop under gravity. We will explicitly

show that, in this particular case, Eq. (2) is no longer valid  Although we think that the arguments given above should

even when considering the whole surface (because the aregeave few doubts about the inapplicability of the geometrical

beyond point B in Fig. 2 has now varied). This can be proved construction of Fig. 1, we will now give an additional ex-

very easily, as follows. In equilibrium, a small displacement ample showing that under gravity this construction does not

will not increase the total energy. That s, relate correctly thé A increments (i.e., Eq. (2) is not valid)

and, consequentlylU, andsU, are necessarily coupled.

U =dUg +8Us =0, ) Consider the case of a thin capillary (Fig. 3). A small

wheresU, andsU, correspond to the increments of gravi- increment (in fact a reduction) of the contact angle will

tational and surface energies, respectively. From Eq. (4) oneincrease the height of the water column &jy. The corre-
can write: sponding variation im g will not be accompanied by any

variation of ALy (in contrast to Eq. (2)). Ifi is just the equi-
8Us = (osL — osv)8AsL + ov8ALy = —8U,. (5) librium value, then the corresponding increment of the solid

1 2
—8Ug = aépgb‘ASLH ,

wherep andg are the liquid density and the acceleration of
gravity, respectivelyH is the drop height, and is a numeri-
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surface energy, namels, — osv)8ALy, will be exactly
balanced by the gravitational energy decrease. Clearly, in
Fig. 36A1y =0andsAs| # 0, and thus Eq. (2) breaks down
for sure.

Before leaving this section, we must say that the argu-
ments that follow the geometrical construction in Fig. 1 are
not a simplified version of any rigorous analysis of the lo-
cal energy balance. This analysis does not exist and, con- Foy
sequently, this local “derivation” is not founded on solid
ground.

A

3. Local thermodynamic derivation

\"
3.1. Thederivation
In the former sections, we have shown that the existing
local, general derivation of Young’s equation is erroneous.
This is why an alternative derivation, valid for all geometries
and under gravity, is proposed below. Consider the following g’
conditions: :

la. Every phase is homogeneous and continuous up to the S(b)
corresponding interface.

1b. Every interface is geometrically defined by a surface Fig. 4. (a) Definition of the volume element (dashed) used for the energy
(i.e., a region of zero thickness). balance when the contact line recedes. All of the external forces contribut-

; : o ing to the work done on the volume element are shgwin.the acceleration
lc. The free energy pgr .Unlt VOIume of any region is inde- ofggravity. (b) Deformation of the liquid part of the \(/gol\llume element during
pendent ofits proximity to the interfaces. a reversible displacement of the contact lide &« ).
2. The LV, SL, and SV interfaces have a free energy per
unit area equal tey, osy, andos| [34], respectively,
and their dependence on surface curvature is negligible.
3. The energy of the contact line is negligible.
4. The variations of free energy related to the vapor phase
are negligible.

First of all, let us identify the forces acting on the bound-
aries of the volume element (Fig. 4a). The surrounding liquid
and vapor will act through the hydrostatic pressure exerted
at the boundary surfaces. Viscous forces are absent in what-
ever process as long as it is reversible. In addition, it can be
proved (see Appendix A) that, under very general assump-
tions, any force acting at the upper edge of the LV surface
limiting the liquid element,Fiy, will be tangential to the
surface. Although we all know thdfy will be proportional
to orv, we do not need a priori such information. This re-
lationship will come out in a natural way as an additional
where ¢ is the contact angle measured at a distance as-result of our derivation. A similar argument can be applied
ymptotically close to the contact line (under the conditions to the possible force#sy and Fs. (see Fig. 4a). Finally,
above). any forces arising from the boundaries located in the solid

The derivation will rely on the energy balance of a small are not relevant, because at these regions the boundary does
volume around a short portion of the contact line (Fig. 4a). not move.

Its length! in the direction orthogonal to the paper will be When the contact line recedes, the liquid fraction of the
short, up to the point that it can be considered as a straightvolume element will be deformed on the side of the LV inter-
line, but much longer than the thickness of the element of face (Fig. 4b). One may think that the usual nonslip bound-
fluid, &. This is possible irrespective of the curvature of the ary condition of hydrodynamics forbids any displacement of
contact line, provided that conditions 1 are fulfilled. The vol- the fluid element at the LS interface. However, this is not al-
ume element considered is extended along the solid surfacavays the case. Microscopic analyses [35] have shown that,
beyond the contact line in both directions and into the solid for nonwetting solid—liquid systems, large slippage of the
(Fig. 4a) in order to be sure about which are the external liquid boundary layer is possible. Consequently, in general,
forces that will contribute to the work done on it during a we must allow a certain degree of movement on the side of
reversible displacement. the liquid opposite to the LV surface (Fig. 4b).

It will be shown below that, under these conditions, a dis-
placement of the contact line is reversible when Young’s
equation holds,

oLy COSY = osy — osL,
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After the displacement of the contact line, the internal en- The work done by the pressure is (see Appendix C)

ergy of the volume element/, will change and, according

to the first law of thermodynamics, this variation can be com- §Wp =—P8V + hi(Py — P)éx1, (12)

puted from the heat exchanged?, and the work done by where Py and P are the pressures in the vapor and liquid

the forces acting on the boundarié#;: phases, respectively. In Egs. (8c) and (12) the terms propor-
tional to # and 42 can be neglected because, by virtue of

SU=38W —50#0. conditions 1, the value df can be arbitrarily small. Conse-

If this process is reversible and at constant temperature, thequently, in the limit where: tends to zero, substitution of

former equation can be written as Egs. (8), (10), (11), and (12) into (6) leads to a simplified
equation of energy balance:

8G=8W + PSV +VsP, (6)

o _ 8Gy =38W,. (13)
wheresU has been written in terms of the Gibbs free energy,
G (see Appendix B) [36]. In the way leading from Eq. (6) to this simplified ver-

Due to the fact that the solid portion of the volume ele- Sion, we have seen that both gravity and pressure have a
ment remains unchanged (its boundaries do not move) andn€gligible contribution to the energy balance of the volume
that, for the sake of simplicity, variations of energy are ne- element in the limit where its boundary at the LV surface
glected in the vapor phase (condition 4), the thermodynamictends to the contact line. This fact does not constitute any
functions and variables of Eqg. (6) correspond to the liquid Kind of limitation on the validity of our derivation but sim-
phase and the interfaces located inside the volume elementPly Shows, in a rather easy way, that Young's equation is still

finite height,z, then our analysis would say that the angle
8G =8GL 468G, +6G,, (7 measured at heiglit would deviate from Young'’s equation

because of gravity and pressure contributions. This is equiv-
alent to saying that, in general and according to Laplace’s
law, the LV surfaces are curved and that this fact is explained
by our Egs. (9) and (12).

8GL =V§P, (8a) Finally, because in general the displacements 5x2,
andés are not related, the condition of a reversible process
(Eqg. (13)) splits into three new equations:

where the subindexes, o, and g refer to the liquid “in-
trinsic” free energy (see Appendix B), the interface, and the
gravitational free energies, respectively,

8Gy =loyyds + [(osy — osL)8x1 + 18x20s (L), (8b)

1 2

8G, ~ épgh [(8x1 — 8x2) COSB, (8c) Fiyds = oLy l6s,
wherep is the liquid density and, except (L), all of the Fs18x2 =0g(L)I8x2,
9the_r parameters haye been define_d previoqs]y orare defineq;l_v COSHSx1 = (osy — o5 )8x1. (14)
in Fig. 4. The meaning ofs. (L) will be clarified in Sec- _ . _ o
tion 4 (there, it will be shown that it is not exactly the same ~ The first and second ones identify the forces as arising
as the SL surface energys., and this is why we use a dif-  from the surface energies (the exact meaninggpf L) will
ferent notation; in factysy (L) is the fraction ofrg, that can be clarified in Section 4), whereas a combination of the first
be assigned to the liquid). and the third equations delivers Young'’s equation (1). This

Now we shall calculate the work done by the external completes our derivation of Young's equation.

forces acting on the boundaries,
3.2. Relaxation of the general conditions

SW =8W, +8Wp, 9)

The derivation above has been done by assuming that the
general conditions 1-4 are fulfilled. Now, we will relax some
of these conditions in order to clarify whether they are nec-
essary or not for the validity of Young’s equation.

Due to the very low densities of the vapor phase, its
SW, = (Fly COS0)(8x1 + 85 COSI), contribution to the free energy is negligible, indeed (condi-

. . tion 4). If the vapor phase were substituted by a second liquid
Wy = (Fiy SInG)(3s sinG). phase, its free energy would have to be taken into account.

wheres W, ands Wp are the work done by the surface forces
and by the pressure, respectively. The work donéilyycan

be evaluated through its components parallel and normal to
the solid surface:

Therefore Its volume element would be deformed, similarly to the first
liquid, with the constraint that at the L—L interface both de-

Wiy =Wy + Wy = Fly s + Fly8x1COSH. (10) formations should be the same. In the energy balance equa-

The work done byFs, is simply tion, additional terms corresponding to this new phase will

appear, but without any effect on the Young equation. Let
SWsL = Fs 8x2. (12) us stress, in passing, that the contribution of the solid bulk
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has led, recently, to the surprising result that, in general, the
\9 \6 line tension depends on the contact angle [39], i€9).

This dependence is presumably more relevant than the de-

pendence of the surface tension on curvature. Consequently,
Fig. 5. Near the contact line, the LV surface deviates from the angle given before the curvature of the interfaces would have an effect on
by Young’s equationd) due to the finite range of the atomic interactions. the values Obij (relaxation of condition 2), Young's equa-
tion should be substituted by its generalized form, Eq. (15).

[though the dependence of the excess free energy on sur-

ace curvature has been included in the general derivation by
Boruvka and Neumann [38], in our opinion their generaliza-
tion of Young’s equation is only formal. In the limit of highly
curved surfaces, we think that the Gibbsian concept of “cur-
vature” [38] is not adequate to describe the complexity of
the new situation.

-

phase to the energy balance is exactly zero because durin
the reversible displacement it remains unchanged (Fig. 4b).
The atomic structure of matter raises the question abou
the localization of surface energy. The energy of molecules
will depart from its value in bulk wherever their distance to
anyone of the interfaces is similar to, or less than, the range

of intermolecular interactions\. Therefore, surface ener- | tof th giti listed ab ¢
gies are localized, in fact, not on a surface but in a volume " SUmmary, most otthe conditions listed above are no

of small but nonvanishing thickness (relaxation of condi- N€¢€ssary for our derlvatlo-n of Young's equation, and the
tions 1). Our derivation is still valid in this case, provided contribution of the contact line energy (condition 3) can be

that the volume element is thick enough (thermodynamic gke:‘j in_to a}ccqunthgivi?g rise lt% thedgeneralized qu' (15).
limit, 7> A in Fig. 4a) (see, for instance, De Gennes [13], OUr derivation is, therefore, valid under very general con-

who adapts the geometrical construction of Fig. 1 to this plitions_(with gra_lvity, for a]l geometries and for compress-
situation). At shorter distances from the contact line (mi- ible fluids) prowde@ that mterfaces: are not f:u_rveq in ex-
croscopic limit), the liquid surface will change its slope and cess.” However, this does not constitute any limitation of our

the angle can depart considerably from the value given by derivation because, in this situation, Young's equation fails.
Young’s equation (Fig. 5) (see the experimental measure-
ments shown in Fig. 3 of Ref. [37]).

Similarly to the atoms near the surface, those near the
contact line will have a different energy from that in the

bulk. This is the origin of what is usually called the contact standing of surface phenomena since the original formula-

!lne tension,z. Its contribution to the energy balance lead- tion by Young of his equation, its elementary interpretation
ing to the contact angle value has been treated by Boruvka

: Lo as equilibrium of forces survives (Fig. 6a) [40]. If one as-
gnd Neumgnn [38], who gene'rallz'ed'Glbbs thermodynam- sumes that the LV, SL, and SV interfaces are in a state of
ical analysis of the whole solid-liquid—vapor system. The

oo ) biaxial tension, then mechanical equilibrium requires that
contribution oft adds an extra term to the Young’s equa-
tion, which now becomes yLv COSY = ysv — ysL, (16)

4. Young'sequation as equilibrium of forces

Despite the immense progress achieved in the under-

T COSx (15) where y;; are surface tensions (forces per unit length),
R~ whereas the symbots; (used in Sections 1-3) denote Gibbs
whereR is the curvature radius of the contact line, and the free energies per unit area. Although experiments and the-

angle between the plane containing the contact line and theory state thajrv = orv (e.g., from our Egs. (14)), the same
plane tangent to the surface of the solid= 0 for a flat correspondence cannot be established for the solid surface

solid surface). It can be shown that our local approach cantensions, because it is difficult to understand how an nonde-
be extended without any difficulty to take into account this formable solid surface can exert a force on the contact line.
effect of r (relaxation of condition 3). In fact, Eq. (16) reduces to Young'’s equation if

Before passing to the next point, we want to discuss
the localization of the contact line energy. Although it is o ] ) .
strictly defined as the excess free energy of the atoms atthat is, if the solid surface tensions differ from surface ener-
the contact line, the finite range of molecular interactions 9i€S by & constant amounats:
discussed above implies that the region affected will be lo-
calized within a radius of the order @f around the contact
line. The excess free energy in this region has thus the same’sV = 9SV ~ %%- (17)
origin as the surface energy. Consequently, the deviation ofGibbs was aware of this, and proposed that surface tensions
6 from the value given by Young'’s equation when one ap- and surface energies were related through Eq. (17), where
proaches the contact line (microscopic limit) can be used to o, would be the solid surface energy on vacuum [41]. How-
evaluater. This has been done recently [37], and the value ever, this reformulation of Young’s equation cannot be de-
obtained in this way agrees with Eq. (15). Finally, the com- duced from Gibbs’ derivation because, in his energy balance
mon origin ofo;; andt (namely, interatomic interactions)  of the whole system, forces do not appear explicitly.

oLy COSY = (osy — osL) —

YSV — YSL = 0Ssv — OSL,

YSL=0SL — 05,
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Beyond its consequences for the understanding of
Young's equation, this result gives valuable information
about the microscopic structure of the solid—fluid interfaces.
The contributions of the atoms on the side of the solidgp
O v G andopy are independent of the fluid. This means that the
@ free energy of the solid does not change when it comes into

contact with a fluid. In the particular case of immiscibility,
this means that the microscopic structure of the solid near
the surface (the position, and the interactions of its atoms) is
O Ly not affected at all by the presence of the fluid. This general
conclusion could probably be useful for microscopic analy-
7 ses of the solid—fluid interactions.
' Previous authors usually decompose the valugspinto
three terms [41,42], as follows

Gsv (V)= Osv-0Os0
osL=0g, + 0L, + AosL

AosL AosL
GSL (L) — GSL - GSO = (USO + 2 ) + (aLo + 2 )7 (19)
(b)

Fig. 6. (a) The classic interpretation of Young's equation as an equilibrium WhereAos, accounts for the interaction between the atoms
of forces. All surfaces are thought to be under biaxial tension. (b) The forces of the L and S phases, respectively. In principle, the en-
tha_t actu_ally act near the_ contact line differ from the surfe_lcg energies on the ergy of interaction belongs to both phases and cannot be
solid—fluid _surfaces:rso is the surface energy of the_} sqhd in vacuum. In distributed th H f th beginni
contrast with the LV surface, the surface of the fluids in contact with the IStributed among them. Rowever, from the very beginning
solid can be under tension or compression. of this kind of analyses [41] it is considered tmb'SL is
equally shared by the L and S phases, as implicitly indi-
cated by the right-hand side of Eq. (19). But this assig-
nation is quite arbitrary and enters in contradiction with
our own conclusion (namely, Bsi (L) = osL — os,, then
osL(L) = oL, + AosL).

Flv To conclude this section we can say that Young'’s equa-
nv <E T) =0, tion cannot be interpreted as the equilibrium of forces of

Fig. 6a. The forces that actually act on the volume element

In contrast, in our local analysis forces do appear and
their relationship with surface energies is deduced, as fol-
lows. From Egs. (14) we can write

YsL <E E) =osL(L), (18) containing the contact line are detailed in Fig. 68.(L)
! andosy(V) are the surface tensions of the fluid surfaces in
and, for completeness, contact with the solid. So, the force exerted from the SV
side of the contact line is due to the interactions with the
ysv (E @) = osv(V). molecules of the gas phase adsorbed onto the solid surface,
! the contribution of the molecules of the solid phase being

The meaning ofrs (L) and osy(V) can be discussed ~ Z€ro- Iq contrast witWSL, depending on Fhe value -Gfgo,

now, once conditions 1 have been relaxed. In view of Fig. 4b, the liquid surfaces in contact with the solid can be in a state
the displacemerdtx, increases the SL surface of the volume Of biaxial tension or compression. Additionally, Fig. 6b is
element on the side of the liquid, only. Ses. (L) (which more exact because the mechanical equilibrium of the three
multiplieséxz in Eq. (8b)) represents the contribution of the Surface tensions is only meaningful on a finite volume el-
atoms of the liquid to the SL surface energy. Combination €ment around the contact line (and not on the contact line
of Egs. (17) and (18) states thag, is simply the contribu- itself, because at the microscopic limit Young's equation is
tion of the atoms of the solid tes. andosy. Now, Young’s ~ No longer valid).

equation will be consistent with the equilibrium of forces ~ The conclusions of this section follow from the assump-
only if og, is independent of which fluid is in contact with ~ tion that slippage of the liquid over the solid surface is pos-

the solid surface. If the “fluid” is vacuum, thergy (V) will sible (at least at the microscopic level) [33]. If not, probably
be zero because no free energy can be assigned to vacuurihe distribution of the interaction energy among phases, or
and, consequentlys, will coincide with osy in this partic- the decomposition of surface mechanical tensions in con-

ular case. In this way we arrive to the same conclusion astributions of liquid and solid surfaces, would be nonsense.
Gibbs, namely thats, is the surface energy of the solid in  Anyway, the validity of our derivation of Young's equation
vacuum. does not depend on this assumption.
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5. Comparison with Gibbs' derivation Appendix A. Surfaceforcesaretangential

Consider a thin element of liquid, whose free surface ex-

As it was already noted in the Introduction, Gibbs’ treat-  tends from point4 to B and is orthogonal to the plane of the
ment of the equilibrium conditions for a solid—fluid system figure (Fig. 7). LetF, be the force exerted by the surface
relies on the general condition that the total energy must be aof the liquid located at the right side of poidt We want
minimum (global derivation). Although this is conceptually to prove that the component orthogonal to the surfage,,
clear, important difficulties arise when this condition must will necessarily be zero.
be applied to an arbitrary geometry. The surface and volume  Our element of liquid will exert a forcsiéi’9 on the rest of
energies cannot be calculated analytically but, instead, theythe liquid located on its left side and this force will be simi-
appear as surface and volume integrals where the integraiar to F4. Infact, by virtue of continuity, if the distaneg, 3
tion range is not specified. In this case, the only option is between pointgl andB is shortenoughﬁg will tend to F4
to follow a variational method and impose ti#df = 0 (at and, consequently, the reaction of the liquid on the left side,
constant entropy and temperature) for any departure from Fp (= —Fp) will tend to —F,. Let us now calculate the
the equilibrium geometry. By doing so, the variation in the torque of all external forces with respect to the midpaint
shape of the surfaces results in a term that accounts for theFor a thin element of liquid its weight can be neglected and,
displacement of the contact lines. Since the geometry is arbi-if das is short enough, pressure can be considered uniform.
trary, the integrand of this term must be identically zero and Their contribution, and that of the tangential components of
Young’s equation results. Following Gibbs, a local condi- the forces, will be of second or higher orderdpz. So, up

tion at the contact line is obtained from the global condition O first order, the net torque will depend only on the perpen-
sU =0. dicular components of the surface forces:

In our local derivation, we analyze the effect of a dis- dag dag dag
placement of the contact line on a volume element near theMo = FAJ_T + |FBJ_|T = (ZFAJ_)T~ (A1)
contact line. Of course, now the energy of this volume ele- ) )
ment will be, in general, modified according to Eq. (6) (and, From Eq. (A.1), we areled .to the conclusion that mechanical
thus, in contrast with the geometrical analysis of Fig. 1). equilibrium (M(? = 0) requires that the normal component
However, if the displacement is reversible, th&h = 0 for of the force acting on the surface be zero.
the whole system. This means simply that the work done
by the forces acting on the boundary of the volume element
is just the same and opposite in sign than the one done by”APPendix B. Thermodynamical relationships
the volume element on the rest of the system (the same can
be stated for the heat exchanged). In general, gravitational ~For a reversible process, the first law of thermodynamics
as well as surface energy changes will occur in the rest of @ccounts for the variation of the internal enexy, in terms
the system, whereas only surface energies are relevant foPf the work done on the systedv, and the variation of
the volume element under analysis. So, our approach avoid<LMropy.
any explicit calculation of the energy terms that are impos-
sible to calculate beyond the volume element boundaries in
a general configuration where the geometry is not defined.
In other words, the contact line displacement will have for
sure an effect on, say, the gravitational and strain energies
of the whole system (Section 2); however, we are not wor-
ried about it because this effect is negligible as compared to
that of the surface energies when the volume element near
the contact line is analyzed.

Apart from the simplicity inherent in avoiding recourse
to integral calculus, in our method, the displacements of the
boundaries have an extra benefit. The energy balance equa-
tion (6) contains both thermodynamic functiorG 6r U)
and mechanical terms (the forces that do work). So, in fact,
our derivation mixes thermodynamics and mechanics, which
results in an explicit relationship between surface energies _. ) ) - )

. . Fig. 7. Analysis of the mechanical equilibrium of a thin volume element
and surface tensions (Eq' (18))' We think that, up to now, (dashed) containing the LV surface between poihend B. The net torque
this relationship had not been previously derived by any rig- will be zero only if the normal components of surface forc€g, and
orous method. Fa 1, vanish.

SU =8W + T$S. (B.1)
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For our purposes, it is more convenient to exprésas a
function of the Gibbs free energy,

G=U+PV -TS. (B.2)
Substitution of Eq. (B.2) into Eq. (B.1) leads to
8G=86W + PSV + VP — SéT, (B.3)

which, for a process at constant temperature, reduces to
8G =8W + P8V + V§P. (B.4)

If this equation is applied to a bulk phase, the wéiK is
just— P38V and, therefore,
8G=VS§P, (B.5)

which is called the intrinsic free energy.

Appendix C. Work done by pressure
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