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A radiative equation of the Cattaneo–Vernotte type is derived from information
theory and the radiative transfer equation. The equation thus derived is a radiative
analog of the equation that is used for the description of hyperbolic heat conduc-
tion. It is shown, without recourse to any phenomenological assumption, that ra-
diative transfer may be included in a natural way in the framework of extended
irreversible thermodynamics~EIT!. © 1998 American Institute of Physics.
@S0022-2488~98!03001-1#

I. INTRODUCTION

Radiative transfer has recently become an active area of research within extended irrev
thermodynamics~EIT!. However, most approaches to the subject have considered the descr
of purely radiation systems~photon gas!,1–3 whereas a joint thermodynamical description of r
diation and matter is certainly necessary. This conclusion can be reached as follows. B
photons do not interact among themselves, it is the interaction between radiation and mat
drives an isolated radiative system towards equilibrium.4 More generally, since in the absence
matter photons cross a small volume centered about any given point without any interactio
clear that the distribution function cannot be determined by the macroscopic properties at th
considered: instead, it will be determined by the properties of the emitting source. Similar
ments to the previous ones have led to the idea5,6 that it does not seem possible to reach va
thermodynamical conclusions with regards to radiative transfer on the basis of any pictur
does not take into account the absorption and emission of radiation by matter. Some phen
logical models that include matter as well as radiation have been proposed~see, e.g., Refs. 7 an
8!. However, a microscopic approach should be sought in order to see to what extent the h
eses that lie at the ground of such phenomenological models can be justified. In this pap
make use of information theory in order to present such a microscopic approach. It will be
useful, before doing so, to briefly recall two information-theoretical results in conductive, p
matter systems. For an ideal monatomic gas, maximization of the entropy density und
constraints of fixed molecule number densityn, vanishing barycentric velocity, fixed interna
energy densityrum ~r stands for the matter density!, and fixed conductive heat fluxq leads,
keeping terms up to second-order inq, to the following results3 ~see also Ref. 6! for the general-
ized Gibbs equation and for the temperatureu of extended irreversible thermodynamics

dsm5
1

u
dum2

2m

5nkB
2Tm

3 r
q dq, ~1!

a!Dedicated to Professor Jose´ Casas-Va´zquez with occasion of his 60th anniversary and of the 25th anniversary of the
paper on Extended Irreversible Thermodynamics by his UAB group.

b!Electronic mail: jfort@songoku.udg.es
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1

u
5

1

Tm
S 11

2r

5n3kB
3Tm

3 q–qD , ~2!

wheresm is the specific entropy,m is the molecular mass~so thatr5mn!, kB stands for the
Boltzmann constant,Tm is the kinetic local-equilibrium temperature, which satisfies that9,6

um53kBTm/2m, ~3!

and the definition ofu for the matter system under consideration is

u21[
]sm

]um
. ~4!

Equations~1! and ~2! have also been derived without making use of information theory
beginning with the postulates of extended irreversible thermodynamics and making use
results of Grad’s 13-moment kinetic theory method.9 This has provided a conceptually reasonab
sound framework for a thermodynamical description of heat conduction in further-away-f
equilibrium states than those corresponding to local-equilibrium thermodynamics. Our purp
here to propose the information-theoretical basis of such a framework for radiative, inste
conductive, heat transfer. Therefore, in the following sections we do not consider a matter s
under a conductive heat fluxq but a radiation-matter system under a radiative heat flux, which
shall callF.

II. INFORMATION THEORY

Assuming that the matter content of the system is a classical ideal monatomic gas, the e
density of the system is4

rs5rsm1rsr52kBE
R3

d3pm

~2p\!3 f m ln f m12kBE
R3

d3pr

~2p\!3 @~11 f r !ln~11 f r !2 f r ln f r #,

~5!

where the subindexesm and r stand for matter and radiation~photons!, ands, f , andp are the
corresponding entropies per unit mass, distribution functions, and momenta, respectively.\
is the Planck constanth divided by 2p. We have used the same notation as in Ref. 4: for exam
f m stands for the number of molecules ind3pm andd3x, divided byd3pmd3x/(2p\)3, with d3x
a differential of volume~in this way, lnfm is dimensionless!.

We will make use of the well-known information-theoretical approach10,11by maximizing~5!
under the macroscopic constraints of fixed total energy densityru, molecular number densityn,
and radiative energy fluxF of the system,

ru5rum1rur5E
R3

d3pm

~2p\!3

pm
2

2m
f m12E

R3

d3pr

~2p\!3 prc f3 , ~6!

n5E
R3

d3pm

~2p\!3 f m , ~7!

F52E
R3

d3pr

~2p\!3 prccf r , ~8!

whereum is the matter specific internal energy andur is the radiation energy, also per unit ma
of matter. In Eq.~6! we have assumed that the barycentric velocity of the matter gas vanishes~this
J. Math. Phys., Vol. 39, No. 1, January 1998
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allows us to concentrate on the topic that is of interest: we are neglecting heat convect
addition to heat conduction!. In Eq. ~8!, c5cV̂ is the velocity of a photon moving in a directio
with unit vectorV̂ andc is the speed of lightin vacuo. Maximization of~5! under the constraints
~6!–~8! finally yields for the distribution functions

f m5expF212l2b
pm

2

2mG , ~9!

f r5
1

exp@bprc2g•prcc#21
, ~10!

wherel, b, andg are Lagrange multipliers.

III. EXTENDED IRREVERSIBLE THERMODYNAMICS OF RADIATIVE SYSTEMS

We now follow the usual information-theoretical procedure9,12 in order to derive an extende
Gibbs equation, which will be used to show that radiative transfer can be included in the f
work of EIT. Since we have assumed the matter gas to be at rest, the equation of con
implies that matter density does not change in time, i.e., the density differential vanishes, s
dn50. From this fact and Eq.~5! it is not difficult to find out expressions fordsm anddsr , in
which we make use of~9! and~10!, respectively. In this way and after use of~6!–~8! we arrive at
dsm5kBb dum anddsr5kBb dur2(kB /r)g•dF. Therefore

ds5dsm1dsr5kBb du2
kB

r
g•dF, ~11!

where we note that the entropy per unit mass of the radiation-matter system under consider
a function of thetotal ~radiation and matter! specific energyu and of the radiative heat fluxF.
Because of this information-theoretical result, we propose the following generalization o
definition ~4!,

u21[
]s

]u
. ~12!

From Eqs.~12! and ~11! we have

u5
1

kBb
. ~13!

On the other hand, it will be useful to follow Mihalas and Mihalas13 by introducing a radiative
parameter Tr through the following equation;

rur5aTr
4, ~14!

with a5p2kB
4/15c3\3 the blackbody constant.

After substitution of the matter distribution function~9! into ~7! and intorum , given by~6!,
and integration over all possible values ofpm , it is easy to reach the resultrum53n/2b, which
together with~3! implies thatTm51/kBb. Thus we have, taking into account Eq.~13!,

u5Tm , ~15!

and this result is consistent with Eq.~2!, because we are not dealing with conductive but w
radiative heat transfer~i.e., we haveq50 althoughFÞ0 in general!.
J. Math. Phys., Vol. 39, No. 1, January 1998
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We now look for a relationship betweenu andTr . We make use of the radiation distributio
function ~10! into ~8! and into rur , given by ~6!. Since both integrations overpr are rather
complicated, we assume thatg5(0,0,g), integrate with the use of formula 3.411-1 of Ref. 14 a
obtain

rur5
a

kB
4b4

11e2/3

~12e2!3 , ~16!

F5
4ca

3kB
4b4

e

~12e2!3 [~0,0,F !, ~17!

with

e[
c

b
g [~0,0,e!. ~18!

From Eqs.~14!, ~16!, and~13! we obtain

u5Tr S ~12e2!3

11e2/3 D 1/4

. ~19!

This equation relatesu to Tr , but e should be written in terms of macroscopic observables if
want the radiative theory to be put at the same level as the conductive one: according
conductive relationship~2!, for a given value ofm ~i.e., for a given matter gas! u is a known
function ofTm if the values of the macroscopic observablesr andq are known. We can cope with
this problem by noting that~16!, ~17!, and~14! can be combined to yield

F54caTr
4

e

31e2 , ~20!

from which it follows that

e5
22A423F2/c2a2Tr

8

F/caTr
4 . ~21!

We make use of~20! in the denominator in~19! and then apply Eq.~21!. Since we will here be
interested in near-equilibrium results, we assume that the value ofF is low enough so thatu can
be approximated by its MacLaurin expansion up to second order inF. This yields

1

u
5

1

Tr
S 11

15

32c2a2Tr
8 F2D , ~22!

and this equation, which applies to radiative transfer, is analogous to the conductive equati~2!.
The second-order result~22! is in agreement with the expression foru that has been obtained@Eqs.
~27! and~17! in Ref. 3# by partial derivation of the radiative entropy density~which was derived
on phenomenological grounds in Refs. 1 and 15! with respect to the radiative energy densit
Equation~22! has also been previously derived by Casas-Va´zquez and Jou for a purely radiatio
system@see Eq.~30! in Ref. 16#, by making use of a fluctuation theory result and of the E
phenomenology. However, there is a very important difference between these approaches
information-theoretical one presented here: since in our definition~12! for u we have made use o
the total radiationand matterentropy and energy densities, the conceptual objections presen
J. Math. Phys., Vol. 39, No. 1, January 1998
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the first lines in this letter do not apply to our analysis. A generalized Gibbs equation can be
derived from~11!, ~18!, ~13!, and~21!. Keeping in mind that we are interested in the second-or
approximation foru ands, we obtain

ds5
1

u
du2

3

4c2arTr
5 F•dF, ~23!

which is analogous to the conductive result~1!. On the other hand, we note from~3!, ~15!, and
~22! that um is a function ofTr @or ur , see Eq.~14!# andF. Therefore, although in Eq.~23! we
have taken the total specific energyu5um1ur andF as independent variables, it is clear that
this modelur andF may also be chosen as independent variables. It is easy to relatedum to dur

anddF. Making use of the relationship thus obtained and of~23!, applying~22!, and neglecting
higher-order terms, one finally obtains the extended Gibbs equation in the new variables,

ds5S 1

u H 11
3kBr1/4

8 ma1/4ur
3/4J 1

315kBF2

256mr2c2ur
3Ddur2S 45kB

32mc2r2ur
2 1

3a1/4

4c2r9/4ur
3/4DF•dF. ~24!

From this equation,~22!, and~14!, it is straightforward to check thatds is an exact differential,
i.e.,

]2s

]F]ur
5

]2s

]ur]F
, ~25!

so that the total~i.e., radiation and matter! specific entropy of the system is a state function, a
should.

IV. APPLICATION

Kremer and Mu¨ller1 were able to deduce a radiative equation which is essentially of
Cattaneo-Vernotte relaxational type@their second Eq.~7.1!#, but the corresponding relaxation tim
and radiative conductivity were not found out. We will now provide a microscopic derivatio
that relaxational equation and find out the relaxation time and radiative conductivity explici

Let us mention, for the sake of completeness, that making use of Eq.~7! it is not difficult to
show that the matter distribution function~9! is locally Maxwellian, with temperatureTm5u @see
Eq. ~15!#. On the other hand, making use of Eqs.~18!, ~21!, ~13!, and ~22!, the information-
theoretical radiative distribution function~10! reads, up to second order inF,

f r5 f r
~0!~11f~1!1f~2!1••• !, ~26!

with

f r
~0!5

1

ex21
, ~27!

f~1!5
3x

4

ex

ex21
V̂•f, ~28!

f~2!5f̃~2!1f5 ~2!, ~29!

f̃~2!52
15x

32

ex

ex21
f–f, ~30!
J. Math. Phys., Vol. 39, No. 1, January 1998
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f5 ~2!5
9x2

32

ex~ex11!

~ex21!2 ~V̂•f!2, ~31!

where we have defined the following dimensionless quantities:

x[
c

kBTr
pr , x[uxu, V̂[

c

c
5

pr

pr
5

x

x
, f[

F

caTr
4 5

F

curr
, ~32!

f being the reduced flux. We have written~27!–~31! in terms ofTr , rather than in terms ofu5Tm ,
for later convenience. The distribution function~26!–~31! is a radiative analog of the Dominguez
Jou distribution function@Eqs.~30!, ~33!, and~34! in Ref. 3#, which was also derived making us
of information theory but applies to a nonrelativistic classical monatomic ideal gas under a
ductive heat flux. Both in radiative and conductive systems~present paper and Ref. 3, respe
tively!, information theory provides a simple derivation for the second-order non-equilib
correctionf (2). This correction is very difficult to find out in the framework of the kinetic theo
of gases17,18 of conductive, purely matter systems. It is worthwhile to mention that informa
theory is very simple mathematically but has the disadvantage that the question of what con
should be imposed in maximizing the entropy density is an open one at present. On the othe
it has been stressed5 that a well-established phenomenological thermodynamics of radiative t
fer does not seem to be available. This is in contrast with the situation in purely matter sys
where phenomenological thermodynamics may be a useful guide in the choice of the inform
theoretical constraints~see Refs. 6, 12, 19, and, in connection with this, pages 46–47 in Re!.

Our purpose here is to show that a relaxational equation follows from the radiative distrib
function. In order to do so, we shall first show that although both~22! and~23! on one hand, and
~26!–~31! on the other, have been obtained working up to second order inF, only the first
nonequilibrium correctionf (1) contributes to the second-order entropy corresponding to~22! and
~23!. Making use of Eq.~26! and of the MacLaurin expansion

ln~a01a1F1a2F21••• !5 ln a01
a1

a0
F1S 2a2

a0
2

a1
2

a0
2D F2

2
1O~F3!

into the expression forrsr , given by Eq.~1!, we obtain, up to second order,

rsr5rsr
~0!12kBE

R3

d3pr

~2p\!3 f r
~0! lnS 1

f r
~0! 11Df~1!

22kBE
R3

d3pr

~2p\!3 f r
~0! lnS 1

f r
~0! 11Df~2!

2kBE
R3

d3pr

~2p\!3

f r
~0!

11 f r
~0! f~1!2

, ~33!

with

rsr
~0!52kBE

R3

d3pr

~2p\!3 @~11 f r
~0!!ln~11 f r

~0!!2 f r
~0! ln f r

~0!#.

The second term on the right-hand side of~33! vanishes because~27! and ~28! imply that the
corresponding integrand changes sign under the transformationpr→2pr . The third term, which
containsf (2), is also seen to vanish after substitution of~27! and ~29!–~31!, application of the
integral theorem~which is easy to prove!
J. Math. Phys., Vol. 39, No. 1, January 1998
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E
R3

d3x F~x!~x•g!25
ugu2

3 E
R3

d3x x2F~x!

@with g any vector andF(x) an arbitrary function#, and use of the integrals

E
0

`

dx
x4ex

~ex21!2 5
4p4

15
, E

0

`

dx
x5e2x

~ex21!3 5
2p4

3
160z~5!

and

E
0

`

dx
x5ex

~ex21!3 5
2p4

3
260z~5!,

z(z) being the Riemann zeta function. The vanishing of the second and third terms o
right-hand side of the radiative entropy density~33! can be regarded as the radiative analogue
the ~e.g., kinetic-theoretical! result17,9 for purely matter systems

E
R3

d3pm

~2p\!3 f m
~0!fm

~k!50,

with f m
(0) the Maxwell–Boltzmann distribution function andfm

(k) the kth-order correction due to
heat conduction and/or convection: this leads to9

rsm5rsm
~0!2

kB

2 E
R3

d3pm

~2p\!3 f m
~0!fm

~1!2
,

so thatfm
(2) does not contribute to the second-order approximation to the matter entropy den

conductive and/or convective situations, just as~33! becomes

rsr5rsr
~0!2kBE

R3

d3pr

~2p\!3

f r
~0!

11 f r
~0! f~1!2

,

so thatf (2) does not contribute to the second-order radiation entropy density in radiative
tions. We mention that this conclusion can also be reached, after rather tedious calculatio
checking that integration of the first and fourth terms on the right-hand side of~33! yields the same
result for rsr as that obtained by substitution of~10! into rsr , given by ~5!, integration, and
expansion of the result up to second order inF. By following either of the procedures it is obtaine
that

rsr5rsr
~0!2

3

8ac2Tr
5 F21O~F3!, ~34!

with rsr
(0)54aTr

3/3.
In the special case of thermodynamic equilibrium (F50), Eq. ~21! becomese50, ~15! and

~19! yield u5Tm5Tr , and~26!–~31! reduce to the Planck distribution function,f r5 f r
(0) , as they

should. In the same case,~34! becomes the usual expression for the radiation entropy densi
equilibrium, i.e.,4 rsr5rsr

(0)54aTr
3/3, and we have, instead of~23!, thatds5(1/Tr)du. This is a

Gibbs equation. Therefore, analogously to what is done in phenomenological thermodynam
matter systems,9 Tr may be called the local-equilibrium temperature andsr

(0)[srle may be called
the local-equilibrium radiative entropy.
J. Math. Phys., Vol. 39, No. 1, January 1998
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We now turn our attention to the second-order theory. In order to verify its consistency
rather important to note that Eq.~34! can also be obtained very easily~although without finding
rsr

(0) explicitly! from ~23!, ~22!, and the radiative part of the local Gibbs equation, i.e.,dsrle

5(1/Tr)dur , in the following way. Fromdsm5(1/u)dum @see the text above Eq.~11! and Eq.
~13!# and ~23! we havedsr5(1/u)dur2(3/4c2arTr

5)F•dF. By integration with the use of~22!
and ~14! we find the second-order resultsr5srle2(3/8ac2rTr

5)F2, in agreement with Eq.~34!.
The fact, derived above Eq.~34!, that f (1) contributes to the second-order radiation spec

entropy, whereasf (2) does not, implies that the second-order thermodynamical results~22! and
~23! correspond to the first-order distribution function, i.e.,f r' f r

(0)(11f (1)) ~we stress that the
same happens in EIT of purely matter systems, see pp. 83–87 in Ref. 9!. From this result, we will
finally be able to find an evolution equation.

It is well known that information theory on its own cannot yield evolution equations, sim
because all it yields is an expression for the distribution function and an~extended! Gibbs equa-
tion. However, the information-theoretical distribution function can be20 and has in fact been
combined with dynamical methods, such as the Boltzmann equation,21 the Liouville equation,22

the statistical operator method,23 or the radiative transfer equation.24 As it is well known,25,8,
multiplication of the radiative transfer equation byV̂ and integration yields, under the gre
approximation,

1

c

]F

]t
1c“–Pr52saF, ~35!

with sa the absorption coefficient,@“–Pr # i[(k51
3 ]Pr ki /]xk and Pr ki the components of the

pressure tensor of radiation, namely,

Pr ki5
2

c E
R3

d3pr

~2p\!3 prckci f r . ~36!

Substitution off r' f r
(0)(11f (1)) in this expression and use of Eqs.~27!, ~28!, and~32! shows that

f (1) does not contribute to the pressure tensor. Use of formula~3.411.1! in Ref. 14 allows us to
perform the remaining integration. This yields

Pr ki5
a

3
Tr

4dki , ~37!

with dki51 for k5 i anddki50 for kÞ i . Use of~37! in Eq. ~35! yields

t
]F

]t
1F52l“Tr , ~38!

with

t5
1

csa
, l5

4ca

3sa
Tr

3. ~39!

Equation~38! is in agreement with a result previously derived in Ref. 1, but here it has b
possible to introduce“Tr instead of the gradient of the radiative energy density, and also to
out the explicit expressions~39! for the radiative relaxation timet and the radiative conductivity
l. It is encouraging that in steady states Eqs.~38! and~39! becomeF52(4ca/3sa)Tr

3
“Tr , and

this Fourier-type equation has been used since many years ago26 in the theory of stellar interiors
We have seen that information theory provides a statistical-mechanical derivation of the
general results~38! and ~39!. Similar, less rigorous expressions have been recently advance
J. Math. Phys., Vol. 39, No. 1, January 1998
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phenomenological grounds.8 Here, information theory has also allowed us to distinguish and re
Tm to Tr @defined by Eqs.~3! and ~14!, respectively# through~22! and ~15!, i.e.,

1

Tm
5

1

Tr
S 11

15

32c2a2Tr
8 F2D .

We stress that this result is valid under the same conditions as those under which~38! and ~39!
hold.

From the generalized Gibbs equation~23!, the energy balance law, namely27 r]u/]t5“–F,
and Eqs.~38! and ~39! it is not difficult to follow the usual procedure9 and identify the entropy
production rate, for low enough values of the fluxF, as

ss5
3sa

4caTr
5 F–F, ~40!

which is semi-positive definite, in agreement with the second law. According to~39! and~40!, we
may writess5(1/lTr

2)F–F, which is analogous to the conductive result9 ss5(1/l8Tm
2 )q–q, with

l8 the thermal conductivity. Equation~40! shows that in the absence of matter (sa50) there is no
entropy production. This corresponds to the fact that photons do not interact among them
Because radiative transfer in the vacuum in absolutely nonlocal, it has been previously arg6,5

that the entropy production must arise from the interaction of radiation with matter, althoug
explicit formula ~40! does not seem to have been derived or proposed before.

We may also note that Eq.~38! is of the Cattaneo–Vemotte type: because of concep
motivations ~see, e.g., Ref. 9!, and also because Fourier’s law of heat conduction, i.e.q
52l8“Tm , is known to fail in very fast processes,28 a more general law, similar to~38!, for heat
conduction~instead of heat radiation!, namely

t8
]q

]t
1q52l8“Tm , ~41!

with t8 the conductive relaxation time, has been considered since long ago.29,30Equation~41! was
a fundamental starting point31 for the development of the theory presently called extended i
versible thermodynamics~see, e.g., Refs. 9 and 20!. The similarity between Eqs.~41! and~38!, in
itself, indicates the reasonability of including radiative transfer in the framework of EIT.

Still from another point of view, we may compare our results with previous proposals~see,
e.g., Ref. 7! by saying that it seems now possible to approach the irreversible thermodynam
radiative transfer without need, in principle, to make use of a temperature field that depen
frequency and direction. This is analogous to the fact that in nonequilibrium thermodynam
heat conduction and convection17,9 there is no need to introduce a temperature field that depe
on the molecular speed~or energy! and direction of motion.

Just to summarize, information theory provides a nonequilibrium extension of Planck’s
tribution function @Eqs. ~26!–~31!#, a microscopic derivation of a radiative equation of t
Cattaneo–Vemotte type@Eqs.~38! and~39!#, and it also leads to the conclusion that the range
nonequilibrium phenomena for which EIT provides an adequate framework is enlarged wi
inclusion of radiative transfer.
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