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Abstract. The thermodynamics of some non-equilibrium systems composed of matter and
radiation is analysed. It is shown that a simple theory based on extended irreversible
thermodynamics (EIT) provides a formulation which is consistent with the second law for
situations in which the time variation of the radiative flux cannot be neglected. The theory
also ensures thermodynamic stability. The results are applied to make some estimations of the
generalized temperature in the stars.

1. Introduction

Classical irreversible thermodynamics (CIT), also called local-equilibrium thermodynamics,
is a very useful theory which has been applied to a great variety of problems (De Groot
and Mazur 1984). Its range of validity is restricted to situations in which thermodynamic
fluxes are linear functions of the gradients of the state variables (Prigogine 1949, De Groot
and Mazur 1984). A well known example is Fourier’s law of heat conduction,

q = −λq∇T (1)

where q is the heat flux,λq stands for the thermal conductivity andT is the absolute
temperature.

The need to consider more general situations has been pointed out many times, both on
the basis of conceptual (Maxwell 1867, Cattaneo 1948, Vernotte 1958) and experimental
(Joseph and Preziosi 1989, 1990, Lebon and Cloot 1989, Dreyer and Struchtrup 1993)
motivations. For situations in which, for example, equation (1) is replaced by the Maxwell–
Cattaneo equation,

τq

dq

dt
+ q = −λq∇T (2)

whereτq is the relaxation time andt is the time, a consistent formulation is provided by
extended irreversible thermodynamics (EIT) (Jouet al 1988, 1993, M̈uller and Ruggeri
1992).

Whereas many detailed studies based on CIT and EIT have dealt with such phenomena
as conductive and convective heat transfer, the thermodynamics of radiative transfer has
been less thoroughly analysed. The present study is motivated by two previous results:
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(i) A very anisotropic radiation field. Ciano and Verh́as (1990, 1991) considered one-
dimensional radiative transfer: in a region of three-dimensional space, all photons are
assumed to move along thex-direction (forward and backward) and the matter is assumed
to be macroscopically at rest. Under the additional assumption that the radiative energy
densityur depends only on the temperature, they showed that

τ
dF

dt
+ F = −λ1

∂T

∂x
(3)

with

τ = 1

σac
and λ1 = c

σa

dur

dT
(4)

and the radiative energy flux isF = (F, 0, 0), σa stands for the absorption coefficient and
c is the speed of light. We mention that equations (3) and (4) can also be easily derived
from the radiative transfer equation.

Equation (3) is a radiative analogue of the heat conduction equation (2). This suggests
that the thermodynamics of such a system may be described by means of the EIT theory.
This is analysed in sections 2 and 3.

(ii) An almost isotropic radiation field.An important equation in the theory of stellar
interiors is the following (Schwarzschild 1965, Chandrasekhar 1967, Bowers and Deeming
1984):

F = −λ2∇T (5)

with

λ2 = 4acT 3

3σa
(6)

where a is the blackbody constant. Ifσa is frequency-dependent then the Rosseland
mean appears in (6) instead ofσa, but this is not necessary to stress the fundamental
thermodynamical features. Equation (5), which is also derived in equilibrium diffusion
theory of radiative transfer (Pomraning 1973), is a radiative analogue of the Fourier heat
conduction equation (1). This suggests that (5) may be included in the CIT theory (see
section 2). In the derivation of (5) it is assumed thatF does not appreciably depend on
time. This suggests that in situations for whichF depends on time, (5) may be generalized
into an equation of the type of (3) and included in the framework of EIT. This point is
developed in section 3.

2. General theory

Let e andJe stands for the total energy per unit mass and the total energy flux of an arbitrary
system. The energy conservation law reads

∂

∂t
(ρe) = −∇ · Je (7)

whereρ is the matter density. If the system is formed by matter macroscopically at rest
(i.e. with vanishing barycentric velocity,v = 0) and radiation, and energy is transported
solely by means of radiation we have

e = um + ur

ρ
≡ u (8)

Je = F (9)
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whereum is the internal energy of matter per unit mass. Taking into account that the mass
balance equation implies that∂ρ/∂t = 0, (7) may be written as

ρ
du

dt
= −∇ · F (10)

where the general definition of the total derivative is du/dt = ∂u/∂t + v · ∇u, which in
our case(v = 0) reduces to du/dt = ∂u/∂t . For v 6= 0, additional terms in equation (10)
have to be taken into account (Pomraning 1973, Mihalas 1986), but the thermodynamics of
such systems will not be considered here.

The classical approach to the thermodynamics of a system formed by matter and
radiation out of equilibrium introduces a temperature related to the matter and a radiation
temperature which depends on frequency and direction (Planck 1959, Callies and Herbert
1988, Albert 1991). On the other hand, in Eu and Mao (1992) and Mao and Eu (1993)
it has been recently argued for the use of a single temperature, essentially on the basis
that a thermometer placed in a radiation–matter system only measures a single temperature
(they note that the classical procedure mentioned above is analogous to the sometimes used
approach to multicomponent systems that introduces different temperatures for different
species, such as in Ichimaru (1973)). Since only a temperature field appears in equations (3)
and (5) it seems to us difficult for the classical approach to lead to a simple thermodynamic
theory that includes such equations. With this perspective we will for the purposes of the
present paper write down the local-equilibrium Gibbs equation for a system formed by
radiation and a single species of matter with constant density in the simple form

T
dsle

dt
= du

dt
(11)

wheresle is the local-equilibrium entropy of the radiation–matter system per unit mass of
matter. A detailed discussion on Gibbs and more general equations for radiation–matter
systems on the basis of kinetic theory can be found in Eu and Mao (1992).

Use of (10) into (11) gives

ρ
dsle

dt
= − 1

T
∇ · F . (12)

Let J s
le andσ s

le stand for the local entropy flux and the local entropy rate of production,
respectively. The entropy balance law is sought in the usual form

ρ
dsle

dt
= −∇ · J s

le + σ s
le. (13)

Comparison of (13) with (12) leads to the identifications

J s
le = 1

T
F and σ s

le = F · ∇
(

1

T

)
. (14)

In the case when radiative transfer can be described by a Fourier-type equation,

F = −λ∇T (15)

with λ > 0 (see, e.g., equations (5) and (6)), then (14) ensures the validity of the second
law,

σ s
le = λ

T 2
(∇T )2 > 0. (16)

However if, instead of (15), an equation of the Maxwell–Cattaneo type (such as (3)) holds,
i.e.

τ
dF

dt
+ F = −λ∇T (17)
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then the local-equilibrium hypothesis (11) clearly breaks down since (16) does not hold and
the semi-positiveness ofσ s is no longer ensured. In order to avoid this contradiction with
the second law, one clearly needs a more general thermodynamic theory that makes the
second law compatible with equation (17). We want to see whether the assumptions and
formalism of EIT can be successfully applied to this case. Therefore we follow the EIT
procedure and assume that the entropy does not depend only onu, as in (11), but also on
the radiative energy fluxF . Then

ds = θ−1 du − T −1vα · dF (18)

where in analogy with (11) we have introduced a generalized temperatureθ , and definedα
through

θ−1(u, F ) =
(

∂s

∂u

)
F

and T −1vα(u, F ) = −
(

∂s

∂F

)
u

(19)

wherev = 1/ρ. For simplicity we restrict the theory to small values of the radiative flux
by assuming the linear relation

α(u, F ) = α(u)F . (20)

Following the same arguments as in the EIT theory of heat conduction (Jouet al 1988,
1993) one finds that the second law, (10), (17), (18) and (20) lead to

α = τ

λT
(21)

whereτ is, as in (17), a parameter with time dimensions, identified with the relaxation time
of the radiative energy flux, and

θ−1 = T −1 − ∂

∂u

( τv

λT 2

) F · F

2
. (22)

According to (18), the generalized entropy is given by

s(u, F ) = sle(u) − τv

2λT 2
F · F (23)

where we can see that the non-equilibrium entropy differs from the local-equilibrium entropy
in the term that depends on the radiative energy flux and its relaxation time. In the following
sections we will explore the consequences of this formalism in special systems.

3. Special cases

(i) A very anisotropic radiation field.For the case (i) explained in the introduction we have,
according to (4) and (23),

s(u, F ) = sle(u) − v

2c2T 2

1

(dur/dT )
F · F (24)

which is in accordance with the results obtained by Ciano and Verhás (1990, 1991). They
based their analysis on Gyarmati’s wave approach (Gyarmati 1977), so that in this one-
dimensional radiative transfer situation such an approach is equivalent to EIT, obtaining
for their result a wider theoretical framework (there has been some controversy on whether
EIT and Gyarmati’s wave approach are equivalent or not in general, see Garcı́a-Coĺın and
Rodriguez 1989, Ḿarkus and Gambar 1989, Garcı́a-Coĺın and Uribe 1991).
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In the present approach, according to (22) and (4) the generalized temperatureθ is
related to the local-equilibrium temperatureT through

θ−1 = T −1 − ∂

∂u

(
v

c2T 2

1

(dur/dT )

)
F · F

2
.

(ii) More general radiation fields.The utility of EIT is not restricted to the previous very
special case. We now show that equation (17) also arises in three-dimensional radiative
transfer situations.

For an arbitrary distribution of radiation we have (Pomraning 1973, Chandrasekhar
1967)

ur(r, t) = 1

c

∫ ∞

0
dν

∫
4π

d� Iν(r,Ω, t) (25)

F (r, t) =
∫ ∞

0
dν

∫
4π

d�ΩIν(r,Ω, t) (26)

Pr(r, t) = 1

c

∫ ∞

0
dν

∫
4π

d�ΩΩIν(r,Ω, t) (27)

where Pr is the radiation pressure tensor,Ω a unit vector and(ΩΩ)αβ = �α�β , with
α, β = x, y, z. The intensityIν(r,Ω, t) is the energy of the photons with frequency in
an interval dν (centred atν) and direction of motion in a solid angle d� (centred at the
direction ofΩ) that cross during a time interval dt (centred att) a surface dσ (centred at
r) orthogonal toΩ, divided by(dν d� dt dσ).

If, for simplicity, we neglect scattering and induced processes, the equation of radiative
transfer reads (Pomraning 1973)

1

c

∂Iν(r,Ω, t)

∂t
+ Ω · ∇Iν(r,Ω, t) = −σaIν(r,Ω, t) + σe(ν) (28)

where again for simplicity the absorption coefficientσa and the volume emissivityσe(ν)

are assumed constant and uniform and we have also applied the gray (or one group)
approximation so thatσa is assumed to be independent of frequency.

Multiplication of (28) byΩ and integration over all frequencies and over all solid angles
gives, making use of (26) and (27),

1

c

∂F (r,Ω, t)

∂t
+ c∇ · Pr(r, t) = −σaF (r,Ω, t) (29)

with [∇ · Pr]α = ∑3
β=1

∂Pβαr

∂xβ
. This is still not an equation of the Maxwell–Cattaneo type

(17). However, since the matter is by assumption macroscopically at rest, we have, as in
(10), ∂F /∂t = dF /dt (the present thermodynamical notation, namely d/dt = ∂/∂t +v ·∇,
which has been introduced in (10) and which is also used in radiation hydrodynamics
(Pomraning 1973), should not be confused with the notation d/dt = ∂/∂t + c · ∇, with
c = cΩ, which is sometimes used in order to write down the radiative transfer equation in a
more compact form, as in Callies and Herbert (1988)). Moreover, if we restrict ourselves to
radiation fields for whichPr satisfies the following requirements: (i) it is a diagonal tensor,
(ii) Pxxr = Pyyr = Pzzr ≡ pr and (iii) it depends only onT , then (29) becomes equation (17)
with

τ = 1

σac
and λ = c

σa

dpr

dT
. (30)

As an example to illustrate these results we will now consider a case which is somehow
opposite to that dealt with in subsection (i): the almost isotropic radiation field mentioned
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as case (ii) in the introduction. As we have mentioned there, an hypothesis which is made
in the derivation of equation (5) is thatF does not depend on time. We will derive here a
generalization of (5) in non-steady state situations and make a thermodynamic study of the
corresponding matter–radiation system in terms of EIT.

As in equilibrium diffusion theory (Pomraning 1973), we restrict ourselves to situations
which satisfy the two following conditions.

(1) The Eddington (or classical diffusion) approximation. It is assumed that the intensity
of an almost isotropic radiation field can be split into two terms,

Iν(r,Ω, t) = 1

4π
I0ν(r, t) + 3

4π
Ω · I1ν(r, t). (31)

The second term in (31) is a first-order anisotropic correction to the isotropic term.
(2) We also assume the isotropic term to be locally Planckian,

1

4π
I0ν(r, t) = 2hν3

c2
(ehν/kT (r,t) − 1)−1 (32)

whereh is the Planck constant andk is the Boltzmann constant.
As is well known, multiplication of (31) by 1,Ω and ΩΩ and integration over all

frequencies and all solid angles yields, respectively, using (25)–(27) and (32),

ur(r, t) = aT 4(r, t) (33)

F (r, t) =
∫ ∞

0
dνI1ν(r, t) (34)

Pr(r, t) = 1
3ur(r, t)U (35)

with a = 8π5k4/15c3h3 the blackbody constant andU the identity matrix. For the special
case of blackbody radiation, matter and radiation are in complete thermodynamic equilibrium
so thatT is homogeneous and stationary and the radiation field is isotropic(I1ν = 0), thus
no neat heat transfer takes place (i.e.F = 0).

From equations (35) and (33) it follows immediately that the three conditions thatP
must satisfy for equations (30) to be applicable are fulfilled. Therefore the non-steady state
equation corresponding to the Fourier (or Fick) type equation (5) is precisely the Maxwell–
Cattaneo-type equation (17). Moreover, according to (30), (33) and (35) we have

τ = 1

σac
and λ = c

3σa

dur

dT
= 4caT 3

3σa
. (36)

Comparison of (36) with (4) shows that the relaxation time is the same as in the highly
anisotropic case dealt with before, whereas the thermal conductivity is one-third of the
result for that one-dimensional heat transfer situation. On the other hand, the thermal
conductivity λ in (36) is the same asλ2 in (6) as it should, since in the present situation
(17) must reduce to (5) in the steady state. The Fourier-type equation (5) may be applied
assuming the radiation flux to vary very slowly in time (see Schwarzschild 1965); otherwise
one may use equation (17). Equations of this kind may be of interest in several astrophysical
phenomena (Schweizer 1985a, b, Uddey and Israel 1982) and, in contrast with CIT, EIT
gives an adequate thermodynamical description under the assumptions used here. Then we
have from equations (36) and (23)

λ = 4
3ac2τT 3 (37)

s(u, F ) = sle(u) − 3v

8ac2T 5
F · F . (38)
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Equation (37) has been obtained before in a relativistic framework through macroscopic
(Weinberg 1971), kinetic (Uddey and Israel 1982) and fluctuation (Pavón et al 1983)
theories. The simplicity of the present approach is due to the assumption that the matter
is macroscopically at rest. Guided by the analogies with heat conduction, we have found
some results that may be applied to a variety of radiation fields.

Whereas CIT may be used in some situations such thatF does not depend on time
(equation (15)), an adequate description outside the steady state (equation (17)) is provided
by EIT. Assuming a radiative flux of the formF = F0 cos(ωt + k · x + α), (17) and (15)
show that the CIT description is adequate forωτ � 1, but not for fast phenomena and
small values of the absorption coefficient (see equations (4) or (36)). Our conclusion is that
an adequate treatment is then provided by EIT.

4. Stability

The requirement of stability has been used in non-radiative EIT theories in order to establish
the admissible values of the heat flux (Jouet al 1993, Criado-Sancho and Llebot 1993).
The local-equilibrium state is stable provided that the entropy is a convex function of the
extended variables. According to (23), these variables areu and F for our radiative EIT
model. Therefore stability is ensured if the following three conditions hold:

∂2s/∂u2 < 0

∂2s/∂F 2 < 0

(∂2s/∂u2)(∂2s/∂F 2) − (∂2s/∂u∂F )2 > 0.

(39)

These conditions can be explicitly calculated for the non-stationary extension of equilibrium
diffusion theory dealt with in subsection (ii) of section 3. Assuming for simplicity that the
matter content of the system consists of an ideal monatomic gas, so that (8) and (33) yield
u = 3kT /2m + aT 4/ρ, with m the molecular mass, the first derivatives of (38) are

∂s

∂u
= 1

T

(
1 + 15F 2

8c2ur(umρ + 4ur)

)
∂s

∂F
= − 3F

4c2T urρ
.

(40)

Finding out the second derivatives, the stability conditions (39) read, respectively,
− 1

T (um + 4ur/ρ)

(
1 + 45(umρ + 6ur)

4c2ur(umρ + 4ur)2
F 2

)
< 0

− 3

4c2T urρ
< 0

F 2 < c2u2
r f (x)

(41)

with f (x) = 2(x + 4)2/(15(x + 1)) andx = ρum/ur. It is clear that the two first conditions
are always satisfied. On the other hand, it is well known that radiative transfer is an
intrinsically flux-limited theory: (25) and (26) imply thatF 6 cur. Now it is easy to see
that f (x) > 1 for any value ofx > 0. Therefore the third condition of stability will be
satisfied as well in any real situation. We conclude that the EIT radiative transfer entropy
(38) implies stability for any possible values of the thermodynamical variablesu andF .
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5. Some estimations of the generalized temperature in the stars

Some experiments have been proposed in which the EIT non-equilibrium temperatureθ

could be tested (Jou and Casas-Vázquez 1992, Casas-Vázquez and Jou 1994). It is therefore
of interest to find out experimental situations in which the difference betweenT and θ

becomes appreciable. For some heat conduction situations this difference may be of about
0.4%. Note that, according to (22), both temperatures are equivalent either in the absence
of radiative flux or for vanishing relaxation time.

Casas-V́azquez and Jou (1994) have provided a rough estimation of the difference
betweenT and θ at the surface of a star. Here we would like to make some estimations
making use of the present more detailed model. In most stars, heat conduction is negligible
but radiative transfer has to be taken into account. The approximation (31) is currently used
(Schwarzschild 1965, Stix 1989) and instead of (8) we have

e = um + ur

ρ
+ ψ ≡ u + ψ (42)

with ψ the gravitational energy per unit mass. Equations (37) and (22) yield

θ−1 = T −1 − ∂

∂u

(
3v

4ac2T 5

)
F · F

2
. (43)

The internal energy is approximately given by a relationship of the monatomic ideal
gas type (Schwarzschild 1965, Stix 1989),

um = 3kT

2mHµ
(44)

wheremH stands for the mass of a proton andµ (the mean molecular mass measured in
proton masses) takes into account the chemical composition and the degrees of ionization.
Insertion of (42), (33) and (44) into (43) yields

θ−1 = T −1 + 1

(3kρ/2mHµ) + 4aT 3

15

8ac2T 6
F 2. (45)

When the surface of a star is considered, it is important to keep in mind that since the
matter density doesnot vanish outside the surface (see Stix 1989), any given area on the
surface is crossed by some photons that have been emitted in outer layers (otherwise, the
inward radiative flux would vanish on the surface and the radiation field would be strongly
anisotropic, so that the approximation (31) would break down).

It seems reasonable to begin making an estimation of (45) for the Sun since this is the
star for which more observational data are available. In order to make an estimation at
the solar surface we use the following values (from the solar model in Stix (1989), p 47):
T = 5778 K, ρ = 3.03× 10−4 kg m−3, µ = 1.251 andF = 6.31× 107 W m−2. Taking
into account thatk/mH = 8254.45 J K−1 kg−1, (45) gives(T − θ)/T of the order 10−6,
i.e. a modification which is only of the order of 10−4%. Such a small modification is of no
practical interest at all but may be useful in order to compare the present approach with that
of Casas-V́azquez and Jou (1994), which yields a modification of about 3% at any stellar
surface. The present estimation relies heavily on the introduction of a single temperature
for the radiation–matter system in the Gibbs equation (11) and its generalization (18), which
has the effect thatu in equation (43) includes, according to (42), both the matter internal
energy and the radiation energy, i.e.u = um + ur/ρ (this is the main difference with both
the conductive case, for whichu = um (see, e.g., Jouet al (1993), and with the approach
of Casas-V́azquez and Jou (1994) to the radiative case, in which they takeu = ur/ρ). For
situations in whichum � ur/ρ, (43) and (45) reduce to the result previously obtained by
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Casas-V́azquez and Jou (1994). In other words, the difference between the present result
and that of Casas-V́azquez and Jou (1994) is due to the fact that, in order to obtain a rough
estimation, these authors did not take into account the effect of the matter content of the
system on the EIT temperature. The present model does not contradict their results but
shows in which limit they may be applied. Indeed, whereas for the former numerical values
of the Sun (33) and (44) show that at the solar surface we haveum � ur/ρ (which explains
the difference between the present result and that of Casas-Vázquez and Jou (1994)), there
are many stars other than the Sun for which this condition does not hold and the difference
betweenT andθ may be appreciable. To see this we may refer to the stellar models provided
by Kurucz (1979). These are classical models of the atmosphere and shallow interior of
stars. All the models in Kurucz (1979) are based on the same well known equations. In
these equations, Kurucz substitutes specific values of different stellar parameters (such as
the effective temperature). Among others, he obtains models for the Sun and Vega. He
uses these two special cases to check that the prediction of the models agree very well with
observations. It is easily checked that many of the other models provided by Kurucz yield
a difference betweenT and θ similar to that obtained by Casas-Vázquez and Jou (1994).
For example, for the first stellar model on p 55 of Kurucz (1979) we haveT = 7928 K,
ρ = 3.07× 10−8 kg m−3, µ = 0.9549 andF = 2.32× 108 W m−2. When these values
are used in equations (33) and (44) it is found thatum andur/ρ are of the same order of
magnitude and equation (45) givesθ = 7726 K, so that the correction(T − θ)/T is of
the order of 2.5%, instead of the rough result of 3% evaluated by Casas-Vázquez and Jou
(1994).

One may also consider solar regions, other than the surface, in which many interesting
processes occur (Stix 1989). Below the solar surfaceρ and T increase very rapidly with
depth, which combined with the slow variation ofF (using the results of the same solar
model) gives a difference betweenT and θ which is even lower than the value we have
obtained for the surface. However, a convective model (i.e.v 6= 0) may change this result
since convection is important in the shallow interior (Stix 1989).

In the lower solar atmosphereF can be taken equal to the surface value, whereasρ

strongly decreases at increasing height and the order of magnitude ofT does not change.
In view of (45), this will lead to a higher difference between the two temperatures: for the
model reproduced in Stix 1989, p 145 (‘model C’ of Vernazzaet al) the maximum difference
betweenT andθ is of about 86 K and is reached at a height of about 1280 km, where it is
thought thatT = 6220 K,ρ = 9.82×10−9 kg m−3 andµ = 1.0537. This gives a correction
of about 1.4%. This difference then decreases since the temperature abruptly increases with
height as the solar corona is approached. On the other hand it must be mentioned that (31)
is a very rough approximation in the atmosphere (Stix 1989, Zirin 1988).

We stress that the previous numerical values are only rough estimations. More realistic
models should include, among other effects, heat convection, scattering and the frequency-
dependence of the absorption coefficient. In fact a completely consistent estimation of
the difference betweenT and θ would require one to take into account the generalized
temperatureθ in all the thermodynamic equations of the stellar models. And it should
not be forgotten that assumption (32), although currently used, might require some kind of
modification in the framework of EIT since it isT and notθ that appears in it. So the
results in this section by no means pretend to be definitive but only mean to illustrate the
possibility of making comparisons between the local-equilibrium and the EIT temperatures.
This can be regarded as a motivation for further work which analyses the possibility of
observable consequences of the generalized temperature in radiative transfer situations.
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