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Abstract. We present a model that makes it possible to analyze the effect of
the age dependences of mortality, fertility and dispersal persistence on the speed
of propagating fronts in two spatial dimensions. Speeds derived analytically agree
very well with those obtained from numerical simulations. Infant mortality and
total fecundity are the most relevant parameters affecting the front speed, whereas
the adult mortality rates and dispersal persistences are less important. We apply
the model to the Neolithic transition in Europe. The predictions of the model
are consistent with the archaeological data for the front speed, provided that the
infant mortality lies within a relatively narrow range.
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1. Introduction

Reaction—dispersal front propagation models have been applied to investigate many
systems, such as human invasions [1,2], virus infections [3], tree colonizations [4], flame
propagation [5,6], etc (for some reviews, see [7]-[10]).

A variety of models have been developed in recent years for analyzing the speeds of
human invasion fronts. Earlier models were based on the equation

“+o00 “+o00
Pyt + T) — pla,y, T) = / / P2+ Dury + Ay ) (s, A, dA, dA,

- p(x,y,T)—l—R[p(x,y,t)], (1)

where p(z,y,t+T) is the population density at the location (z,y) and time ¢t+7". The time
interval T' is that between two subsequent dispersal events or ‘jumps’, i.e. one generation
(defined as the mean age difference between an individual and her/his children). The
dispersal kernel ¢(A,, A,) is the probability per unit area that the children of an individual
located at (z+A,, y+A,,t) become adults at (z,y,t+7). The first term on the right-hand
side of equation (1) corresponds to population dispersal and the last one, R[p(z,y,t)],
to net reproduction (births minus deaths). For isotropic kernels, equation (1) can be
Taylor expanded up to second order in space and first order in time to yield Fisher’s
equation [11,12],

Op/ot = DV*p+ F(p) (2)

where D = (1/4T) [72° [ ¢(A,, A) (A2 + A2) dA, dA, is the diffusion coefficient
and F(p) = OR/0t is called the population growth function. In Fisher’s equation a logistic
form is assumed, F(p) = ap(l — p/pmax) (a is called the initial growth rate and pyax the
carrying capacity). If the Taylor expansion is performed up to second order, time-delayed
models are obtained instead [1,13].

According to equation (1), newborn individuals can appear at (z,y) (last term) while
their parents migrate away from (x,y) (the first term on the right-hand side). In other
words, according to those models parents can leave their newborn children alone. However,
newborn humans cannot survive alone without their parents during a substantial time.
For this reason, in recent years it has been proposed that the following equation is more
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realistic than equation (1) for human populations (for some detailed derivations, see
equation (10) in [14], equation (4) and figure 1 in [15], and equation (176) and figure 17
in [9]),

+o0 +o0o
plr,y,t+T) = RO/ / plx+ Ay y+ Ay t) o(Ay, Ay) dA, dA, (3)

where Ry is the net fecundity or reproductive rate. This is a net rate, i.e. it also includes
mortality effects. Therefore, Ry is the mean number of reproductive children per parent
(here reproductive means not just fertile, but that they will eventually reproduce). In
practice, Ry is estimated by the ratio of the number of individuals at a given time divided
by the number of individuals a generation time 7" earlier [14].

Equation (3) is valid only at sufficiently low values of the population density p, because
there is a maximum saturation density p,., above which net reproduction vanishes. For
this reason, this model applies the simple cut-off p(z,y,t + T') = pmax in the case where
equation (3) yields p(x,y,t +T) > pmax [14].

In principle, instead of equation (3) and this cut-off, one might be tempted to use a
logistic finite-difference equation,

o+ 1) = Rop (1- ) ()

pmax

with p = fj;o fj;o plr+ A,y + Ay t) (AL, Ay)dA, dA,. However, we will not apply
equation (4) because it is known from non-spatial models that it can yield negative values
for p(z,y,t+T) for some values of Ry [16, 17] (in contrast, the logistic differential-equation
model, i.e. Fisher’s equation (2), does not have this problem, but it is also unsuitable
because it cannot take into account three important effects: the delay time [1,13], the
dispersal kernel shape [15, 18] and, as explained above, the cohabitation of children and
their parents [9,14,15]). Equations (3) and (4) differ in the saturation behavior, i.e. in
the way in which the population density p approaches its upper limit p,... However,
this is not important because the saturation behavior has not been observed in natural
populations outside the laboratory [19]. Moreover, both equations (4) and (3) imply
an exponential increase at low values of p, so the speeds of fronts are the same in the
two models. Indeed, we have checked by means of numerical integrations that the front
speeds predicted by equations (4) and (3) differ by less than 0.3% for the realistic values
of the reproductive rate (1.9 < Ry < 2.6) and the dispersal kernel introduced in [14].
Therefore, both equations (4) and (3) yield the same front speeds, but conceptually we
find equation (3) more reasonable than (4), because the latter can yield negative values
of the population density in some circumstances [16, 17].

Equation (3) is called the non-overlapping generation model. Note that in this model,
all traits in the life history of the individuals are ignored, i.e. only the age-independent
parameters T" and R, are used. Therefore, this model cannot analyze any effect on
the front speed of the fact that the fecundity, mortality and dispersal kernel depend
on the age of individuals. In this paper, we will extend this model to allow for such
dependences. Previously, age-dependent models have been built for one-dimensional range
expansions [20]—-[22] and, more recently, for the spread of epidemics [23]. A model also
exists for tree population range expansions [24] but, as we shall explain below, such a
model cannot be applied to human populations.
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In section 2 we present a generalization of the model (3), and in section 3 we test the
results using numerical simulations. Section 4 is devoted to the application of our new
model to the Neolithic transition in Europe, and section 5 summarizes our conclusions.

Before presenting our model, it is worth mentioning that noise can affect front
propagation rates under certain conditions. This effect appears at low enough particle
numbers [25,26], but for Neolithic transition fronts it has been shown recently that such
stochastic effects are not important, due to the fact that the carrying capacity of pre-
industrial farming populations is large enough to make such effects negligible (see section 6
in [15]).

2. The theoretical model

In order to take into account the dependences of fecundity, mortality and dispersal on age,
we regard the population as subdivided into several age groups. For simplicity, and also
for later application to data appropriate to the Neolithic transition (section 4), we consider
only four groups (however, all of our results can be easily extended to an arbitrarily large
number of groups). For definiteness, let the age group subindices be ordered so that
p1(z,y,t) corresponds to the youngest age group and ps(x,y,t) to the oldest one. Then
we generalize equation (3) into the set

eyt 1) = fo / D2 D, Aol + Ay + A, 1) dA, dA,

s / 03D, A s+ Mgy + Ay 1) dA, dA,

+ / Pa(Au, Ay)pa(z + Ay + Ay, 1) A, dA,
palagt ) = (1= mi) [ 6180, 8o+ Ary+ Ay, 1) A A8,
et +7) = (1= ma) [ 6a(B0 Aa(o+ Ary+ 8,0)dA, A,
a4 7) = (1 — ms) / b3(Ds A s+ Ausy + Ay, 1) dA, dA,

where p;(z,y,t) is the population density (number of individuals per unit area) of age
group ¢, f; is its fecundity, m; its mortality, and ¢;(A,, A,) its dispersal kernel. We assume
that the infant population p;(z,y,t) does not reproduce, so f; = 0 in equations (5) (this
is in agreement with the data that we will use in section 4). The time interval 7 should
be chosen so that the demographic data on mortality, fecundity and dispersal, which are
always recorded in age intervals, can be applied to equations (5) (see section 3). Like
for the age groups with densities py, p and p3, mortality will also affect the dynamics of
subpopulation py, but this effect is not included in equations (5) for the following reason.
Since by definition p, is the oldest age group, all individuals corresponding to ps will
simply disappear after their reproduction and dispersal, and their death will not affect
the front speed (this will be checked by the agreement between our model in this section
and the simulations in section 3, where the mortality of subpopulation p, is explicitly

included).
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It is important to stress that the form of the evolution equations (equations (5) in our
case) is highly dependent on the biological properties of the species considered. Indeed, the
integrals of dispersal kernels over all space appear in each of our equations (5) because we
are here dealing with human populations, whereas for tree populations a dispersal kernel
appears only in the evolution equation for p; because in that case the dispersal takes place
only for seeds and not for trees [24].

Before deriving the theoretical speed for our model, let us stress that all of the
equations in the former set (5) will be used in our numerical simulations (section 3)
using values appropriate to a specific application, namely the Neolithic transition. As we
shall see in section 3, then the appropriate age interval is 7 = 12.5 yr and f; = 0 according
to the ethnographic data available. The latter value (fy = 0) can be used to make our
theoretical equations (5) much simpler, if we predict intuitively that the fact that the
oldest population ps(x,y,t) does not reproduce (f; = 0) will make it totally irrelevant to
the propagation speed of the invasion front. Under this assumption, that will be checked
in section 3 by means of numerical simulations of the whole set (5), the system (5) reduces
to

p1($,y,t + T) = f2 / ¢2(Axa Ay)pZ(x + Aza ) + Ayat) dAszy
+ f3 / ¢3(Am Ay>p3(x + Aza Yy + Aya t) dAa: dAy
p?(x7y7t+ T) = (1 - ml)/(bl(Axa Ay)pl(x + Azay + Ayat) dAa: dAy

pg([L‘,y,t + T) = (]' - m2) / ¢2(Axa Ay)p2(x + Aa}ay + Ayat) dAw dAy

In order to derive the asymptotic front speed, we look for constant-shape solutions for
each subpopulation, i.e. p;(z,y,t) = w;exp[—N(x — ct)] (i = 1,2,3) in the limit in which
the coordinate co-moving with the front z =  — ¢t — oo. Then the set of equations (5)
becomes

w1 exp()\c) = fgwg/ooo(pg(A)Io()\A)A dA -+ fgwg/ovoo(pg(A)Io()\A)A dA
wyexp(Ac) = (1 — ml)wl/ooogol(A)[o()\A)A dA (7)
wzexp(Ac) = (1 — mg)wg/ooo(pg(A)Io()\A)A dA,

where

2T

Ih(\A) = x /O27r df exp [AA cos 0] (8)

is the modified Bessel function of the first kind and order zero, and we have assumed
that the ¢; depend only on distance A = /A2 + AZ (isotropic kernels). The dispersal
probability per unit area ¢;(A) is related to that per unit length ¢;(A) (i.e. into a 2D
ring of area 2rA dA) as ¢;(A) = 27rA¢;(A) [4].

For simplicity, let us assume a simple description in which
$i(A) = peid® (A) + (1 = per)d@ (A =) (9)
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where 6 is the two-dimensional Dirac delta function, i.e., an individual of age group i
either stays at rest (with probability p.;, which is called the persistence of age group i) or
moves distance r (with probability 1 — p,;). Such a description has been useful previously
in several models [14,15,27] that did not take the age structure of the population into
account. In those papers it was also shown that a realistic value for the mobility distance
of prehistoric human populations is » = 50 km. We use a single value for r because
using a different value for each age group would substantially complicate the simulations
in section 3. We think that this is reasonable because in our model the value of the
persistence p.; (and, therefore, the mobility behavior of the individuals) is allowed to
depend on age. Then, using matrix notation, the system (7) can be rewritten as

exp(Ac)w = ﬁ()\)w, (10)
where we have defined
7= () (1)
0 f2¥a(N) f3¥3(A)
)= (1= m)w0 0 o |, (12)
0 (1 —mg)Wy(N) 0
and
Ui(A) = pei + (1 = pei) Io(Ar). (13)

As usual, according to marginal stability analysis [28] the front speed ¢ for systems
with the form (10) can be found from the well-known expression [20]

1
¢ = min +p1(}), (14)

with p; the largest of the eigenvalues of ﬁ(z\)

3. Numerical simulations

The numerical simulations of the system (5) are performed on a 2D grid with 1000 x 1000
nodes, with nearest-neighbor distance » = 50 km (see section 2). Initially p;(x,y,t) = 0.25
(but the front speed does not depend on these values) for i = 1,...,4 at the central node,
and 0 elsewhere. At each time interval, corresponding to 7 = 12.5 yr, we compute the
new subpopulation number densities p;(x,y,t 4+ 7) at all nodes of the 2D grid in a two-
step process: dispersal and growth (the latter includes reproduction and deaths). In the
dispersal step, as in the analytical model in section 2, a fraction p.; of the population in age
group ¢ stays at the original node, and the remaining fraction is distributed equally among
the nearest neighbors, i.e., a fraction (1 —p,;)/4 jumps a distance £+r along each horizontal
or vertical direction. In the second step, the effects of reproduction and mortality are
computed as follows. At each node, the new infant population density p; is computed as
Z;:Q fip: (see the first equation in the set (5); the numerical values of f; are given below).
The new population density p; for each of the remaining three age groups (i = 2,...,4)

doi:10.1088/1742-5468/2010/11 /P11006 6
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Table 1. Model parameters and their ranges.

Parameter (units) Characteristic value Minimum value Maximum value References

F' (children/adult) 3.30 3.00 3.50 [29, 30]
my (dimensionless) 0.55 0.27 0.77 (32]
my (dimensionless) 0.30 0.15 0.45 [32]
ms (dimensionless) 0.40 0.20 0.60 [32]
my (dimensionless) 1.00 1.00 1.00 [32]
Per (dimensionless) 0.38 0.19 0.54 33]
Peo (dimensionless) 0.38 0.19 0.54 [33]
Pes (dimensionless) 0.38 0.19 0.54 [33]
Pesa (dimensionless) 0.38 0.19 0.54 [33]

is computed by removing a fraction m;_;p;_; from the population density p;_; (see the
last three equations in the set (5)). In order to avoid an unbounded population growth, if
after any of these steps a population density in a grid node exceeds the saturation value,
then it is set equal to the saturation value (we used a saturation value of unity in our
simulations, ppay = 1 individual km~2, but changing it does not modify the front speed).
The two-step dispersal-growth cycle is then repeated many times, until a constant speed
for the propagation of the population profiles is reached (we define the position of the
front as that with p; = 0.05, but the value of the speed obtained does not depend on this
definition).

The mean observed values of the parameters, as well as the ranges used in the
simulations, are reported in table 1. They have been obtained as follows. First, as
mentioned above, in order to use the histograms for the fecundities in [29,30], the
appropriate interval between age groups is 7 = 12.5 yr. From table 2 in [29], the
characteristic value for the total fertility ratio F' of pre-industrial agriculturalists was
estimated as F' ~ 6.6 children per adult woman. The characteristic value F' ~ 3.3 children
per adult is given in our table 1 in the units appropriate for use in our model (this is half the
value per adult woman, because the number of women and men in human populations are
approximately the same). An upper bound for F' was set to 7.0 children per adult woman
(from the estimations for Linearbandkeramik (LBK) farmers during their range expansion
in Western Europe [31]). The minimum value for pre-industrial agriculturalists is F' = 6.0
children per adult woman, according to table 2 in [29]. The age-dependent fecundities f;
used in our model were estimated by multiplying the total fertility F' by the age-specific
relative ratios (defined as the age-specific rate f; divided by the total rate F') in natural
fertility populations, as given in [30], figure 2.5. For F' = 3.3 children per adult, this yields
f1=0.0, fo =23, f3 = 1.0, f4 = 0.0 children per adult. Age-dependent mortalities were
estimated from table 4 in [32], yielding the characteristic values m; = 0.55, my = 0.30,
ms = 0.40, my = 1.00. Finally [33], is the only source that we know of with quantitative
dispersal data for pre-industrial agriculturalist populations. Unfortunately, it does not
seem possible to estimate the age-dependent persistences p.; because all mobility data
give individual distances moved since birth, not since the individual had several specific
ages. However, [33] makes it possible to estimate several values of the persistence of the
individuals in the youngest age group, p.;. As noted in a previous publication [14], the
mean is p.; = 0.38 and the range is 0.19 < p.; < 0.54. Due to the lack of more refined
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Figure 1. Front speed in 2D versus adult dispersion persistence, for two values
of the infant mortality. The hatched region gives the observed range for the
Neolithic front speed [34]. The numerical results for the model with several
age groups (circles) agree well with the analytical results for the same model
(full curves). Note that for an infant mortality m; = 0.55, which has been
derived from data for real populations [32], any value of p.o = pe3 yields a
speed consistent with the data. We have used f; = 0.0, fo = 2.3, f3 = 1.0,
fa = 0.0, mg = 0.30, ms = 0.40, m4 = 1.00 and p.; = 0.38 (see section 3). The
dashed curve corresponds to the single-population model of equation (3), i.e. to
neglecting any dependence of fertility, mortality or persistence on age (this curve
has been computed using equation (14) in [14] and the mean values derived from
anthropological observations in that reference, namely Ry = 2.2, T' = 32 yr and
r = 50 km).

information, we approximated the persistences of older individuals (pe2, pes and pes) to
the same range as that of p.; (table 1). In fact, we will find that our model is consistent
with the data for any value of these persistences (figure 1).

4. Application to the Neolithic transition in Europe

Finally we can apply our model to the Neolithic transition in Europe. In figure 1,
the full lines are the analytical results from equation (14), and the symbols have been
obtained using the numerical simulations described in the previous section. In figure 1,
the persistence of the youngest population has its characteristic value, p.; = 0.38 (table 1),
and we have assumed p.y = pes (because, as mentioned above, only p.; can be reliably
estimated from the ethnographic data available; p.y and p.3 cannot). The persistence of
the oldest age group, pes, does not have any effect on the front speed (simply because it
appears only in the term multiplying f; = 0 in equations (5)). The hatched rectangle in
figure 1 corresponds to the speed range of the Neolithic transition in Europe, as determined
from archaeological data (0.6-1.3 km yr~') [34].

From figure 1 we see that the infant mortality m; has a very important effect on
the front speed. Indeed, the predicted speeds are consistent with the observed range
(hatched rectangle) for an infant mortality of m; = 0.55 (such a value has been estimated

doi:10.1088/1742-5468/2010/11 /P11006 8
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from the age determination of Neolithic skeletons; see e.g. table 4 in [32]). However, the
predicted speeds are totally inconsistent with the observed range for other values of the
infant mortality, e.g. for m; = 0.20. From figure 1 we conclude that (i) the predictions of
the model are consistent with the observed speed range for realistic values of the infant
mortality, and (ii) the role of the infant mortality should be taken into account in order
to understand human invasion front speeds, as done here for the first time. In figure 1
we also note that the speed decreases with increasing values of the mortality, as was to
be expected intuitively (if fewer people survive, fewer people can migrate and the front
speed should be slower). Also, according to figure 1, the higher the value of the adult
persistence (pes = pe3), the more slowly the front propagates, as was again to be expected
(fewer people migrate if the persistence is higher; see section 2). In figure 1 it is also
seen that the numerical simulations (circles) confirm the validity of our analytical results
(curves).

Finally, in figure 1 we have also included the predictions of the single-population
model, i.e. without allowing for any dependences of the fertility, mortality or persistence
on age (dashed curve). This is the model corresponding to equation (3) and was analyzed
in [14]. Figure 1 illustrates some limitations of the single-population model (dashed curve).
Firstly, this model predicts a vanishing front speed if the persistence is equal to 1, because
then individuals cannot move at all (in the single-population model, no age dependence
of the persistence is possible). In contrast, in the several-population model (full curves
in figure 1) the front propagates even if p.o = pes = 1. This is due to the role of
Per = 0.38 # 1 (see section 3), which appears in the second equation (6). But the most
important limitation of the single-population model (dashed curve in figure 1) is that, for a
wide range of the persistence, it apparently agrees with the observed Neolithic front speed
(hatched rectangle), independently of the value of the infant mortality m;. The reason is
simply that m; does not appear at all in the single-population model (equation (3)). In
contrast, the several-population model (full curves in figure 1) shows that some values of
the infant mortality m; are not consistent with the observed speed, a crucial conclusion
that a single-population model seems unable to reach.

It is important to estimate the importance of each parameter value for the front speed.
In order to do so, in figure 2 we present a sensitivity analysis, performed as follows. All
but one of the adjustable parameters were fixed at the characteristic value given in table 1.
The speed was then computed for the single remaining parameter set to its minimum and
maximum values in table 1. Figure 2 shows that the model is very sensitive to the infant
mortality m; and, to a lesser extent, to the total fecundity ratio F'. The model is somewhat
sensitive to the young adult mortality my and to the persistences of the infants (p.;) and
young adults (pe2), albeit to a lesser extent. The persistence of the mature adults, p.s, has
a non-vanishing but very small effect. Finally, the model is insensitive to the mortality of
mature adults, mg. This was expected because, according to the ethnographic data [32],
the oldest individuals (with density p4) do not reproduce (f; = 0), so the last equation in
the set (5) should not affect the propagation behavior of the front, and it is only in this
equation that the parameter mg appears. Indeed, this expectation has made it possible to
reduce equations (5) to the simpler system (6), which in turn has led us to our analytical
result for the front speed (equations (10)—(14)).

Let us analyze in more detail the effect of infant mortality m; on the invasion front
speed, given its importance (figure 2) as well as its novelty. Figure 3 shows this effect

doi:10.1088/1742-5468/2010/11 /P11006 9
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Figure 2. Sensitivity analysis of the model as regards its parameter values (total
fertility ratio F', mortalities m,mgo, ms and persistences pe1, pe2, Pe3). The
mortality and persistence of the oldest age group (mg4 and pe4, respectively)
are not included because they do not have any effect on the front speed (see the
main text). The baseline case (squares) corresponds to the characteristic values
of the parameters in table 1. Bars show the variation of the front speed about
the baseline case for the parameter ranges in table 1.

25 —m™m—m——————7——1—

i S NN <& simulations
2.0 & —o— theory

Figure 3. The effect of infant mortality on the speed of the Neolithic transition.
The hatched region indicates the observed speed range of the Neolithic transition
in Europe [34]. The numerical results (rhombus) agree perfectly with the
analytical ones (open circles and full curve). The range of infant mortality
consistent with the observations is 0.5 < m; < 0.63.

(when keeping the other parameters fixed at their baseline or characteristic values in
table 1). As in figure 1, the hatched rectangle shows the observed speed range for
the Neolithic transition in Europe (0.6-1.3 km yr—!). Simulated values (rhombus) are
in almost perfect agreement with theoretical ones (open circles and full curve). It is
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important to note that, according to figure 3, for the predicted speed to lie within the
experimental range, the infant mortality must be rather high, m; > 0.5. Interestingly,
high values of m; are indeed observed in pre-industrial populations [32]. However, above a
threshold value (m; ~ 0.63 in figure 3) infant mortality is too high and the speed too slow
compared to the ranges implied by the archaeological data (hatched rectangle). For even
larger values of infant mortality, the front speed drops until it vanishes, thereby leading
to a front propagation failure induced by infant mortality.

Although we have illustrated our model for a specific application (the Neolithic
transition in Europe), clearly it can be also useful for other population expansions.
Moreover, the effect of the mortality shown in figure 3 could be related to several
interesting factors. For example, a region with less natural resources (or a period of
drought) could lead to higher values of the infant mortality my, and thus to slower speeds
(figure 3) or even to the failure of the invasive species (vanishing speed, also seen in
figure 3) to successfully colonize the new habitat.

Finally, since our model treats the dispersal, fecundity and mortality of the individuals
in different age groups independently, there is the possibility that the leading edge of the
front is dominated by a particular age group. In order to analyze this, in figure 4(a) we
plot the age group density profiles as a function of position. Note that for the parameter
values used in figure 4 the simulated front speed is about 1.1 km yr~! (from the circles
with my = 0.55 in figure 1), so at the final time ¢ = 2500 yr the front position (defined
in section 3 as that with p; = 0.05) should be about 2500 x 1.1 = 2750 km. This
is in fair agreement with figure 4(a) (in spite of the existence of an initial transient in
the simulations, before a constant front speed is attained). Figure 4(b) is a plot of the
mean age as a function of position (obtained directly from the profiles in figure 4(a)).
It is seen that the mean age decreases as the front leading edge (right-hand side) is
approached. This seems reasonable, and could have been expected because the first of
equations (5) implies that some newborn individuals (belonging to the age group with
density p;) appear some distance away from the position where their parents used to lie
in the previous iteration.

5. Conclusions

In this paper we have analyzed the effect of age-dependent mortality, fecundity and
persistence on the invasion speed for populations that spread across a two-dimensional
space. Our simulated and analytical front speeds are consistent with each other and,
for realistic parameter ranges, with the observed speed of the Neolithic transition in
Europe. Predicted speeds fall within the experimental range for realistic values of the
infant mortality (e.g., m; = 0.55), and this conclusion is independent of the adult dispersal
persistence (figure 1). The sensitivity of the results has been analyzed, with reference to a
baseline case for the parameter values obtained from the ethnographic literature (figure 2).
Infant mortality m and total fecundity ratio F' have the most important effects. This is
the first model that relates the Neolithic front speed to the age-dependent demographic
and dispersal parameters of the population. We have found that there is a relatively
narrow range for the value of the infant mortality (0.5 < m; < 0.63) consistent with
the observed range of the Neolithic front speed (figure 3). Of course, more complicated
models can be considered, but for the application considered here it is very difficult to
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Figure 4. (a) Age profiles of the Neolithic subpopulations (p1, p2, ps and py
correspond to the population densities of age groups with mean ages 12.5 yr, 25 yr,
37.5 yr and 50 yr, respectively). The saturation density of the total population
(p = p1+p2+p3+ps) is reached for p = ppax = 1 individuals km =2 (corresponding
to 50?2 = 2500 individuals per square cell with side 50 km). We have used the
characteristic values in table 1 for m; and pe;, the values in section 3 for f;
(1 = 1,2,3,4) and a final time ¢ = 200 iterations - 12.5 yr/iteration = 2500 yr.
(b) Mean age of the Neolithic individuals as a function of position, obtained from
the plots in 4(a) as 12.5p; + 25py + 37.5p3 + 50py. It is seen that the mean age
decreases as the front leading edge is approached.

find more detailed ethnographic data, and our simple model takes into account the age
dependence of the major demographic parameters.

This paper opens the way to predicting human invasion front speeds from demographic
traits, such as the fertilities and mortalities of age groups. The estimates for such
demographic parameters that we have used are based from anthropological data from
present pre-industrial agricultural populations. But it is very interesting that Bocquet-
Appel and co-workers [35]-[37] have measured the evolution of fertility rates directly
from archaeological data (incidentally, this has led to the important proposal that the
Neolithic transition was driven initially by increased fertility rates, attributed to a decrease
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in inter-birth interval, and followed by increased mortality rates). Such archaeological
fieldwork may lead to direct estimates for the demographic parameter values of prehistoric
populations necessary for applying our model. Conversely, our model can be also
used to constrain demographic traits from measured front propagation rates, and the
demographic parameter values thus derived could be compared to those measured directly
from archeological data.
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