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Abstract. [t is shown that information theory predicts a decrease of the effective thermal conduc-
tivity. This new correction corresponds to a time-delayed vorticity dynamics, and it may explain
the inhibition of the effective heat flux in turbulent systems.

1. Introduction

Turbulent systems are typically far from equilibrium, but nonequilibrium statisti-
cal theories are complicated and not completely well-established. This is why much
work has been devoted to two-dimensional turbulence in the absence of viscosi-
ty: then, there are two constants of motion (namely the energy and the entropy)
and one may derive approximate results by means of the methods of equilibrium
statistical mechanics [1]. Nevertheless, this is not possible for the case of three-
dimensional turbulence and, more specifically, if the role of viscous forces cannot
be neglected. It means that topics such as the inhibition of the heat flux in three-
dimensional turbulent flows [2] require a different perspective. One possibility is
information theory, a statistical-mechanical method the validity of which is not
restricted to equilibrium systems [3]. It is true, however, that turbulence is an
extremely broad topic encompassing many different issues such as turbulent diffu-
sion, magnetohydrodynamic turbulence, etc., which will certainly complicate any
framework aiming at complete generality. In fact, the same is true when deal-
ing with radiative transfer: nonequilibrium radiation is of utmost importance in
the description of many systems, such as stellar atmospheres, shock-wave ther-
mometry, etc. However, information theory has been applied in order to obtain a
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thermodynamically-consistent description of radiative transfer from which one can
derive specific results, at least in simple situations [4, 5]. We will here present an
analogous approach to turbulence, keeping in mind that we are looking for a rea-
sonable, simple formalism that allows us to focus our attention on the fundamental
points. Qur analysis is also motivated by the fact that recently, simple thermody-
namic approaches have made it possible to analyze several properties and effects
of turbulent flows [6, 7].

2. Information-Statistical Approach to Turbulence

An important feature of turbulent flows is that small, uncontrollable disturbances
in the initial conditions lead to different values for hydrodynamic variables, e.g. for
the velocity @ (x, %) of the fluid at position x and time {. This justifies a statistical
approach to turbulence, within which one introduces an ensemble of values of, say,
?(x,t), obtained in the same experiment and under the same conditions [8]. In
addition to #(z,t), let us introduce the density and specific internal energy fields
as p(z,t) and %(x,t), respectively. We define I' as a five-vector with components
p(x,t), i(ax,t) and the components of (z, ), so that dI' = 9 dp d. Let f ([')dl’
stand for the {time- and space-dependent) probability that, for a given experiment
and initial conditions, the velocity, specific internal energy and density of the finid
have values in a differential dI', centered at T'.
We require the probability to be normalized,

1:[df‘f(1‘). (1)
The expected value for the kinetic energy per unit mass is

2 2

b = 20 < farp ey ASAL o)

2 2

where v2(x,t) is the expected value for |9{z,)|?. The specific kinetic energy (2)
of the fluid has been used by many authors in statistical approaches to turbu-
lence. Sometimes the temperature is introduced as the partial derivative of the
entropy with respect to the kinetic energy (2) (see, e.g., [1] and references there-
in). However, it is well-known from both the classical [9] and the extended [10]
theories of nonequilibrium thermodynamics that the temperature is not related to
the kinetic energy (2) but to the internal energy. It is true that this is not the
most general possible situation as it is clear from the fact that, in the case of
radiation-matter systems, both the matter internal energy and the radiation ener-
gy have to be taken into account [5]. However, turbulence takes place in fluids,
thus it seems reasonable to require that any approach to turbulence should be in
agreement with well-established, general results for fiuids. We therefore see that,
from a thermodynamic perspective, the expected value for the specific internal
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energy, namely
w= [drsmam (3)

{instead of (2)), should be necessary if the temperature is to be introduced in a
way consistent with the usual one in non-turbulent fluid theory.

An important quantity in turbulent flows is the vorticity field. We write the
expected value for the vorticity of the flow as [1]

V X v(z,t) = [de(F)an?. (@)
Finally, the expected density field is

plat) = [drf(0)p. (5)

According to information theory, the most probable distribution f (') is that which
maximizes the functional [3]

s(e,t) = =k [ dT () S (D) (6)
under the constraints of the system. The expression (6} is of the form

5 x —Zpilnpg,
i

where p; is the probability of microstate ¢, which is just the Boltzmann expression
for the entropy [t1]. Thus % in (6) is a positive constant that may be chosen
arbitrarily and, with a suitable choice for k, s may be interpreted as the specific
entropy of the system [12]. The entropy formula {6} has been used in the analysis
of spectral energy transport in turbulent flows and leads, as a special case, to
the Kolmogorov spectrum [12]. Here, we will not need spectral decomposition
because we are interested in studying i) the thermodynamics of the system, and
ii) the influence of the vorticity field on the transport properties of turbulent
fluids. We stress that we make use of the constraint (4) because of the well-known
relevance of the vorticity field in turbulent flows, and of the constraints (3) and (5)
because the specific internal energy and the density are of central importance in
any thermodynamic description of fluid systems. Of course, additional constraints
(even an infinite number [13]) could be included, and they would lead to more
general approaches. However, as stressed in the Introduction, we look for a specific
and the simplest possible case in order to explore the consequences of information
theory in the thermodynamic description of turbulence. The use of information
iheory amounts to finding out the most probable flow under the set of constraints
under consideration. Maximization of the specific entropy (6) under the constraints
(1) and (3)—(5) yields

J(T) = Zexp [~ fi—7-(Vx9)—cf]. (")
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where Z = exp[—1 — A] is a normalization factor, and A, 3, v and £ are Lagrange
multipliers. It is worth stressing that the information theory approach is of purely
probabilistic nature [3]: the result (7) does not depend on the identification of
5 in (6) with the entropy. In the present paper, however, such an identification
(which has been widely used for both matter and radiation systems, sce e.g. [4])
will be useful in order to find out the multipliers 3, v and ¢ in terms of measurable
quantities.

From (6) we obtain for the difference in s between two macrostates of the flow
with similar properties (i.e., with similar probability distributions f (I'))

5s = —k/dI‘[lnf(I‘)+1]6f(I‘), (®)
which can be written, using {(7), (1), (3) and (4), as
§s = kfdu—+ky - 6(V xv)+ kebp. (9)

The radiative analog of this expression is (11) in [5]. Similarly to what was done
in {5, we can identify the Lagrange multiplier § appearing in this expression from
the thermodynamic definition of temperature T', namely [10] 1/T = 8s/8u. This
yields, making use of (9),
1

= —. 10
Similarly, from the thermodynamic definition of pressure p, i.e. p/T = 8s/3(1/p),
we obtain

_ __F
kTp?’
From (9} and (10) we obtain
ds = ~du+ 2 do+ by d(V x v) (11
s = maut Bavt ey d(V xv), )

where v = 1/p is the specific volume, and we have made use of, e.g., the symbol
ds instead of 85 because, in contrast to what happened in (8), the phase-space dif-
ferential dI" no longer appears so that no confusion can arise between differentials
referring to the phase space volume and those referring to macroscopic quanti-
ties. Equation (11) has the form which is well-known from extended irreversible
thermodynamics [10]: it is nothing but the usual Gibbs equation from classical (or
local-equilibrium) irreversible thermodynamics and an additional term (the last
term in {11)) which is well-known in many situations, such as non-Fickian diffu-
sion, fast heat or electrical conduction, etc.; such a term contains the differential of
a variable which is relevant in the process under consideration: whereas an equa-
tion such as (11) is well-known with the last term containing, e.g., the differential
of the electric cutrent or that of the diffusion flux [10], here it has been derived and
will be applied for the first time to the analysis of the role of vorticity in turbulent
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flows. It is important to note that, according to the result (11), the nonequilibrium
specific entropy s is a function of the vorticity in addition to the specific internal
energy and specific volume of the flow, i.e.

s = s{u,v,Vxuv), (12)
and, also from (11), the Lagrange multiplier - can be written as

19s{u, v,V x v)

TS TNV %) (13)

We may compare the dependence (12) with the local-equilibrium assumption,
which is the starting point of classical irreversible thermodynamics. According
.to this assumption, in states close enough to equilibrium the specific entropy
depends locally on the same variables as those upon which it depends in equi-
librium, i.e. [9]

Sle = s]e(“’: U) ) (14)

where the subindex le denotes “local equilibrium”. In the special case ¥V x v =0,
the generalized entropy (12) must reduce to its classical value (14), which does not
depend on the additional variable ¥ x ». Thus, according to (13},

FYIVXU:D =0

Therefore, we may consider a Taylor expansion for + of the form
v = ¥(V xv)+0(V xv)?, (15)

where 1 = 1(u,v) is a scalar field and O(V x v©)? stands for second- and higher
order terms. From (11) and (15) we obtain for the rate of increase of specific
entropy

ds ldu pd /1 d
i fE-i—'fE"t*(;)-l-k?ﬁ(va)-a(VXv). (16)
On the other hand, the law of balance of mass is
dp
bl AN A
di P v, (17}

and that of the internal energy reads (see, e.g., [9], Chapter XII)

d 0, O
pd—?z-—v-quVm—p”V-v——P (V=P (VXxv—2w), (18)
where g is the heat flux, p is the pressure and p” is the scalar viscous pressure.

0
P* is the symmetric (iraceless) part of the viscous pressure tensor, and P*” is
the axial vector corresponding to its antisymmetric part [9]. w is the local angular
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velocity, and its contribution to the last term in (18) has been shown to be relevant
for polyatomic fluids in which the internal structure plays an important role (w is
then identified with the spin, which arises from internal molecular rotations, and
it leads to an internal contribution te the angular momentum per unit mass of
the fluid) [14, 15]. Since we are here interested in the consequences of the vorticity
¥V x v on the properties of turbulent fluids, we will for simplicity consider situations
such that the contribution of w is negligible, i.e.,

du
Pt
Use of {17} and (19) into the information-statistical result (16) yields

0 a
= -V.g—pV v —p'V-v-P": VP (Vxuv). (19)

0 0
s Vg p P v (P) (
&= T T v T T (V x v) (20)
d
+ (VX 0) (¥ X 0).

Let J¢ and o stand for the local entropy flux and the local entropy rate of pro-
duction, respectively. The general form of the entropy balance equation is

ds

,D"c'i't'" = -V.J + o7,

Comparison with (20) leads to the identifications

=7
and
Q 0
s = .V(E)WEV.UAEV:_Y_ {P‘“’—k Tgbi(va)]-M (21)
STYA\T) T T 7 T

The second law requires that o > 0. From {21}, we see that this will be fulfilled
if the fluid follows the simple evolution equations

g = —AVT (A>0), (22)
pr= Vv (£20), (23)
P = -V (120), (24)

(25)

j L kav,bEdi(V X v) 25

-V xv)  (p20).

The first three equations are the usual Fourier, Stokes and Newton laws (we
may thus identify A, £ and 5 with the thermal conductivity, bulk viscosity and
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shear viscosity, respectively). It is worth stressing that consistency with these weil-
known results would not have been reached if we had made use of the specific
energy density, namely v?/2 (see (2)), instead of the internal energy (3). This
fact is not surprising in view of the remarks presented in the Introduction, and
justifies our departure from previous work (see, e.g., [1] and references therein).
On the other hand, (25) corresponds to the effect of the vorticity. In order to
understand the physical meaning of this equation, it is useful to recall that, as
stressed in the last section of the treatise on turbulence by Monin and Yaglom
[8], transport equations of linear form between fluxes and forces correspond to an
infinite spread of propagation of signals. Physically, however, one should expect
fluxes to be delayed with respect to their thermodynamically conjugate forces. For
example, a linear relationship between the axial vector P** and the vorticity (for
the case w < |V x vi, considered above) is well-known and usually written as
[9]

(Vxwv) = WLPC”’, (26)

Tr
where 7, s called the rotational viscosity. This law corresponds to the case in
which a nonvanishing vorticity instantaneously gives rise to an associate stress. It
is more reasonable, however, that this effect will take place after a time delay 7,
ie.
(Vxuo)le ~vor, t-7) = ——I—R-a"”(:c, t),
r

where z is the position vector, { is the time and ¢ = z, y, 2. After Taylor-expanding
the left-hand side and retaining first-order terms we obtain

1

(Vxwv)i— [V(V X v)i-v+—(z(v xv}i]r =

Ot B

where all quantities are evaluated at (@,t). This equation may also be written
as

d
PCLU — T —
L

which is just (25) provided that we identify g and 4 in terms of measurable quan-
tities as

(Vxv) = —n(V xv), (27)

f= T, (28)
_ T
v =T (29)

so that the extended Gibbs equation (11) may be written, making use also of
(15},

ds = %%Jr%dwr:;:(vx”)'d(v”)- (30)
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The time-delayed equation (25) (or {27)) is analogous to the radiative equation (38)
in [5]. Both tesults have been derived from information-statistical theory, although
we would like to stress that time-delayed transport iz well-known to vield reliable
predictions for many phenomena, e.g. hyperbolic heat conduction [16, 17] and
shear-wave speeds in liquids [18]. In fact, it would not have been difficult to obtain
time-delayed more general results for other fluxes (instead of the linear laws (22)-
(24)) simply by making use of additional variables in our formalism. However, the
simple approach presented here will be enough in order to analyze the effect of the
vorticity, which is discussed in the next section.

3. Application. Turbulent-Induced Heat Flux Inhibition

A basic result of turbulence theory is that the transport properties of turbulent
flows are different from those of laminar ones: the Reynolds decomposition of
fluid variables leads to additional terms in the transport equations for the mean
variables, as compared to the corresponding equations for the full variables. Such
additional terms, which arise from turbulent fluctuations, lead to the introduction
of an eddy or turbulent heat conductivity, viscosity, etc., which usually correspond
to an enhancement of, e.g., the heat flux in turbulent flows [8]. However, as stressed
above, the finite speed of thermal signals implies that the heat flux cannot reach
arbitrarily high values. Indeed, the energy density times the maximum molecular
speed gives an upper, finite bound for the rate of energy transfer. It means that in
general, there will be one or several mechanisms at work that make it impossible for
the heat flux to acquire arbitrarily high values: heat-flux inhibitions are well-known
in radiative transfer [19], plasma physics [20] and astrophysics [21]. The presence of
turbulence has also been experimentally associated with a decrease in the effective
thermal conductivity in plasmas [2]. While one may develop kinetic-theoretical
approaches that carefully take into account all of the microscopic processes, it
would be intercsting to try to approach the topic of nonlinear conductivities arising
from turbulence from a thermodynamic, mathematically simaple perspective. Once
the main point, namely a possible turbulent heat-inhibiting mechanism, has been
approached (as done below), it should be possible to complicate our basic model by
the introduction of additional variables (e.g., electric and magnetic fields, several
particle species, and so on) in order to deal with specific systems (e.g., plasmas).
Before considering the consequences of our model in turbulent flows, however, it
is useful to resort to Eu’s theory of nonlinear transport [20, 10]. This theory is
consistent with extended irreversible thermodynamics and applies to a wide range
of densities. Within its framework, the result for transport coefficients such as the
thermal conductivity A is [10]

N N Vros/nkg
= Ap

P e (31)

sinh /702 /nkg '
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where Ay is the thermal conductivity in the absence of the time-delayed process
in the system under consideration, # is the molecular number density, kg is the
Boltzmann constant, and &2 is the rate of entropy production for the relaxation-
al or nonlinear process with time delay 7. In the simple case considered in the
present paper, the vorticity dynamics is time delayed (see (25) or (27)), and its
corresponding entropy production is given by the last term in (21), which may also
be written (using (23) and (28)) as

gl = g,—T(VX‘u)Z.

We make use of this expression in (31). Since third- and higher order terms have
been neglected (see (15) and (21)), we Taylor-expand the expression for A up to
second order. This yields

T T
A= Ag[l—6HEBT(V><U)2}+O(V><H)3. (32)
This equation predicts a reduction of the thermal conductivity A due to the vortic-
ity, and is analogous to the reduction of A due to an electric current (as predicted
by {12) in [22]). In the relevant case of turbulent flows, as mentioned above, a
reduction of heat conduction has indeed been observed in the case of plasmas.
Although we have stressed that, for the specific case of plasma physics, our model
should be extended in order to include additional relevant variables (electric and
magnetic fields, ion and electron concentrations, etc.), we can analyze the effect
(32} within the simple model presented here. Use of (32) into (22) yields

A

g = X[l - A—O}VT, (33)
where A,/Aq is the correction arising from the vorticity, i.e.
™ 2
= v Ao .
Ay 6nkBT( X 'U) 0 (34)

Equation (33) is a generalization of the usual Fourier law of heat conduction. The
term A, /Ap should be regarded as a small correction under the range of validily
of the theory presented here, i.e. A,/Ag € 1 (otherwise, higher-order terms in
(32) should be taken into account). This means that we can neglect, in a first
approximation, additional nonlinear terms arising from this small correction when
making use of (33) into the energy balance (19). In this way, we obtain a relatively
simple equation,

ar A'v 2 Osu_ 0 av
pc(-wc;)?-l-’v-VT) = AD[1-5G]V T—P¥:V -P¥ . (Vxuv), (35
where we have introduced the specific heat per unit mass ¢ (i.e., du = ¢d7’) and
assumed an incompressible fluid (so that {17) implies ¥V -© = 0), also for the sake
of mathematical simplicity.
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In turbulent flows, one is interested in the mean properties of the fluid, which
are easily measurable. The velocity field is decomposed into its mean V' = (v) and
fluctuating parts v',i.e. v = V-+o'. Here {...) denotes ensemble average. The other
fields are similarly decomposed, eg. T=T + 77, (V x v) = (V x v) + (V x v}/,
etc. By making use of this decomposition and of (34) into (35), and following the
usual procedure [8], we obtain the corresponding mean transport equation

pcg = (Aot Af —M)VZT—I%” R (Vxwv), (36)

where, as usual [8], we have defined a contribution Ay to the effective thermal
conductivity, arising from the turbulent fluctuations, through

- — O 04 e T A 1IN

MVIT = peV - (@T) + P V' + P (V x vy — E%ﬁ[(v x v)2] (—-T—) ,

(37)

and we have analogously introduced an effective conductivity Az arising from the
mean vorticity field through

o2 T"?er—z VT
VT = o2 (V X o) (T ). (38)

The first term in the right-hand side of (37) is the usual Reynolds contribution [8],
whereas the next two terms are due to the fluctuations of the viscous stresses. All
of these terms would have been obtained also if one had simply assumed the usual
(22)-(24) and (26). In contrast, the last term in (37) arises because of the vorticity
fluctuations and is new from the model presented here, being ultimately due to the
information-theoretical evolution equation {25). The relative importance of these
terms will, of course, depend on the particular cases to which one wishes to apply
the formalism in further work. It is important to stress that comparison of (36)
and (35) shows that the effective thermal conductivity of the mean flow may be
written as
A= Aot Ar— Ag,

s0 that in addition to the contribution Ay arising from the turbulent fuctuations,
our model predicts a modification in the effective conductivity, Ay, whick shows
that the effect of the vorticity may indeed lead to an inhibition of heat conduction
in turbulent flows.

4, Conclusions

The analysis presented follows a spirit similar to that in previous papers [6, 7], in
the sense that use has been made of a thermodynamic formalism. Our formalism
has been derived from information theory and has been applied to the study the
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thermal conductivity of turbulent flows. The main conclusion of the paper is that
information statistical theory leads to an extended Gibbs equation which corre-
sponds to a decrease of the effective thermal conductivity. We have stressed that
analogous results to those derived here can be found in many non-turbulent sys-
tems that may be properly described within the framework of extended irreversible
thermodynamics. This analogy, including the information-theoretical foundations,
is particularly clear in the case of radiative transfer [5]. Of course, more complicat-
ed systems require the use of additional variables, i.e. subsequent extensions of the
simple model presented here, in the same way that particular radiative systems
require more complicated theories that those presented in [4, 5]. Comparison of
models, based on the presented formalism, and experimental data could be useful
in order to explain heat-flux inhibitions in turbulent fiuids and also as a possible
way to measure the values of the vorticity relaxation time 7 appearing in (27) and
(34).
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