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a b s t r a c t

We derive new expressions to estimate the burning velocity of a laminar gas flame
in a simplified combustion model based on a one-step single reaction with transport
coefficients (mass and heat) depending on temperature, and species with different specific
heats. These new expressions generalize the bounds and approximations previously
derived by Williams, von Karman, Zeldovich and Frank–Kamenetskii, Benguria and
Depassier, and the matching asymptotic expansion method in a two zone model. The
comparison of the flame speed predicted by these new analytical expressions with that
numerically simulated by the full combustion model for a large variety of cases allows
us to determine their range of validity. The upper bound based on the Benguria and
Depassier method provides very good approximations for the actual propagation speed
of combustion flames, being substantially better than the asymptotic method used in the
recent papers.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In laminar flame theory, the combustion of premixed gases with no energy losses develops a flame front that propagates
at a constant speed [1,2]. Classical analyses carried out by several investigators (e.g., Refs. [3–5]) have provided well-known
analytical expressions for predicting this laminar burning velocity on simplified combustion models. Although currently
thought of having limited interest, some of these methods are still in use when investigating the essence of realistic
combustion processes. A very recent example may be the analysis of the propagation of laminar premixed flames with a
reversible reaction term [6]. Analytical approaches are also useful, as a first step, to test numerical codes before introducing
more complicated effects (e.g., heat losses) that make analytical estimations of the flame speed impossible.
Mostwell-known analytical expressions usually adopt a simplified one-dimensional (1D)model of a unimolecular binary

mixturewith a single-step reaction, with background flow at rest andwith constant transport coefficients and specific heats.
Some attempts to generalize these expressions to more realistic conditions have been carried out, although focusing in one
particular methodology applied to solve a specific combustion problem (see, e.g., Refs. [7–10]). In contrast, the purpose
of the present paper is to discuss the validity of a wide range of methodologies for estimating the burning velocity in a
1D combustion model that takes account of (1) the temperature dependence of mass and heat diffusivities and (2) the
differences of specific heats between reactants andproducts. In addition, ourmodel takes into consideration the very realistic
case of including a non-zero flow velocity across the flame front due to density variations (see, e.g., Ref. [11]). Note that this
effect has not been included in the recent studies focused on derived analytical expressions for the wavefront speed of
combustion flames [1,2,5,8,9].
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For doing so, we have generalized the expressions of (1) the burning-rate eigenvalue method [4], (2) the von Kármán [4]
and (3) the Zeldovich and Frank–Kamenetskii [3] approximations, (4) the matching asymptotic expansion method based
on a two zone model [12], (5) the Kolmogorov–Petrovski–Piskunov approximation [13], and the rigorous (6) lower and (7)
upper bounds based on the variational principle developed by Benguria and Depassier [5,14,15]. We believe that this is the
first comparison of all of those methods that takes into consideration the temperature dependence of transport coefficients
and gases with different specific heats. Estimates for the burning velocity are compared with the value obtained by simu-
lating the full combustion model, here numerically solved using a finite difference method with a Crank–Nicholson scheme
[16]. We have found that the new analytical expression for the upper bound provides the best approximation to the flame
speed, being substantially better than thematching asymptotic expansionmethod recently adopted in different studies (see
Refs. [7,6,17]).
The structure of the paper is as follows. We first formulate the combustion model in Section 2, where it is integrated

numerically. Section 3 focuses on the new analytical expressions for estimating the burning velocity. Their detailed
derivations are given in Appendix A–E. Section 4 makes a comparison between the flame speed obtained from numerical
simulations (Section 2) and that deduced from the wide variety of analytical methods here analyzed (Section 3). Finally, the
main conclusions extracted from the present paper are found in Section 5.

2. Combustion model

2.1. 1D model of a premixed flame

We analyze a 1D system consisting of an ideal gas that contains a binary mixture in which the unimolecular reaction
R → P takes place, where R stands for reactants and P for products. This process occurs at constant pressure and, as
explained in Section 1, no energy losses are assumed. Further assumptions are null mean mass velocity (i.e., background
flow at rest) except in the flame front where density variations lead to non-zero values for the flow velocity, system in local
thermodynamic equilibrium and negligible external forces. The model equations for this reacting ideal-gas mixture reduce
to the following three conservation equations [4,18].
The conservation of total mass, reads
∂ρ

∂t
+
∂ (ρv)

∂z
= 0, (1)

where ρ is the total density, v is the flow velocity, z the spatial coordinate and t the time.
The conservation of species i = R (fuel), P (products), with Yi the mass fraction of species i (YP + YR = 1)

ρ
∂Yi
∂t
+ ρv

∂Yi
∂z
+
∂ ji
∂z
= wi, (2)

where ji andwi are the mass diffusion flux and the reaction rate of species i, respectively. In this binary mixture, jR+ jP = 0
andwR + wP = 0 (see, e.g., Ref. [18]).
Finally, the conservation equation for the enthalpy h of the mixture reads

ρ
∑
i

Yi
∂hi
∂t
+ ρv

∑
i

Yi
∂hi
∂z
+

∑
i

hiwi +
∑
i

ji
∂hi
∂z
+
∂ jq
∂z
= 0, (3)

where jq is the heat flux and hi = hi0 + cp ,i (T − T0) correspond to the enthalpy of species i (h = YPhP + YRhR), with T the
absolute temperature, hi0 the enthalpy at the room absolute temperature T0 and cp ,i the specific heat of species i (assumed
constant).
Heat jq and mass ji fluxes follow from Fourier’s and Fick’s law, neglecting both Soret and Duffour effects [18,19],

jq = −λ
∂T
∂z
, ji = −ρDM

∂Yi
∂z

(4)

where λ is the heat conductivity and DM is the mass diffusion coefficient, which, in a binary mixture, is the same for both
species because YP = 1 − YR and jP = −jR [18]. Following Ref. [3], we assume a power law dependence of both heat and
mass transport coefficients on temperature as follows,

λ

cpρ
= DH = DH0

(
T
T0

)n
; DM = DM0

(
T
T0

)n
(5)

where DH is the heat diffusivity and cp is the specific heat of the mixture (cp = YPcp,P + YRcp,R). DH0 and DM0 are the
heat and mass diffusivities at the room temperature T0. Note that, following Ref. [3], DH and DM have the same temperature
dependence, so the ratio DM/DH becomes constant, being defined as the Lewis number Le. Classical reviews on combustion
theory for premixed laminar flames usually adopt Le = 1 and values of the power law exponent n in Eq. (5) ranging from
n = 1 to 2 [3,4].
Finally, the reaction rate in Eq. (2) is determined by [1]

wP = Aρ (1− YP)
(
e−

Ea
RT − e−

Ea
RT0

)
(6)
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where A is the pre-exponential factor, Ea is the activation energy per mole and R is the universal gas constant. Note that

Eq. (6) is an Arrhenius type reaction rate with the e−
Ea
RT0 term added on the r.h.s. This extra term has been very recently used

in the study of premixed flames [1,8,9], since it leads to equilibrium states if both T = T0 and YP = 0 everywhere (i.e., at the
initial state; this condition is very reasonable and is, in fact, required when we apply the variational method in Section 3).
This last term in Eq. (6) is sometimes referred to as a cold-boundary term. We would like to stress that we have performed

several tests by numerically solving the above combustionmodel without using the e−
Ea
RT0 term and the results for the flame

speed match those obtained with the e−
Ea
RT0 term. This is because e−

Ea
RT0 � e−

Ea
RT at high temperatures.

For convenience, we shall work in terms of dimensionless variables related to temperature T , mass fraction of products
YP , flow velocity v, spatial coordinate z and time t . Thus, we define the dimensionless temperature θ = (T − T0) /(T∞−T0),
where T∞ is the maximum temperature achieved in the flame front, and the dimensionless mass fraction of products
Y = (YP − YP0) /(YP∞− YP0), where YP∞ (=1) and YP0 (=0) correspond to the maximum and to the initial mass fraction of
products respectively. Dimensionless time t ′ = tα2A/β and space z ′ = z

√
α2A/(βDH0)make use of the dimensionless heat-

release coefficient α = (T∞ − T0) /T∞ and the Zeldovich number β = αEa/(RT∞) and allow us to define the dimensionless
flow velocity v′ = v

√
β/(α2ADH0).

By using these dimensionless variables and parameters, and with the ideal-gas law for determining the temperature
dependence of ρ on temperature T assuming a process at constant pressure, Eq. (1) reads

∂(1/θ)
∂t ′

+
∂
(
v′/θ

)
∂z ′

= 0, (7)

Eq. (2) for i = P is

∂Y
∂t ′
+ v′

∂Y
∂z ′
=
ϕ

Le
∂

∂z ′

[
ϕn−1

∂Y
∂z ′

]
+ F , (8)

and Eq. (3) leads to

∂θ

∂t ′
+ v′

∂θ

∂z ′
= ϕ

∂

∂z ′

[
ϕn−1

∂θ

∂z ′

]
−
∆cp
cp

ϕn

Le
∂θ

∂z ′
∂Y
∂z ′
+ f , (9)

where1cp = cp,R − cp,P and the functions ϕ, f and F are

ϕ =
(
1+ α

1−α θ
)
, (10)

F = β

α2
(1− Y )

[
e−

β
α(αθ+1−α) − e−

β
α(1−α)

]
, (11)

f =
(
1+ ∆cp

cp
θ
)
F . (12)

The set of three PDEs with three variables (θ , Y and v′) defined by Eqs. (7)–(9) becomes our full combustion model. For
∆cp = 0 and Le = 1, Eqs. (8) and (9) reduce to a single one for θ = Y . This simplified combustion model involves only two
variables (θ = Y and v′) and two equations (7), (8)–(9). Indeed, the assumption θ = Y , which is based on the Zeldovich
energy conservation equation, has been usually applied by other authors in the study of the flame front speed in simple
1D combustion models (see, e.g., Refs. [1,8,9]). The full combustion model, however, is here used for a better comparison
between numerical simulations and generalized analytical expressions since values of∆cp 6= 0 and Le 6= 1may be used and,
then, the assumption θ = Y breaks down. Nevertheless, at the end of Section 4we investigate the differences in the burning
velocities obtained between the full and the simplifiedmodelwhen the latter one is extended to analyze caseswith∆cp 6= 0.

2.2. Numerical simulations

Eq. (8)–(9) are numerically integrated by using the finite difference method where the value for the dimensionless flow
velocity v′ is obtained by solving Eq. (7). In order to provide both robustness and accuracy, the Crank–Nicholson scheme
has been implemented [16]. We have performed several simulations by varying the values of the Zeldovich number β
(equivalent to varying the activation energy Ea), the power law coefficient n and the difference between specific heats of
reactants and products∆cp. A constant value of the dimensionless parameter α (=0.85) has been chosen, corresponding to
a room temperature T0 = 300 K and to a flame temperature T∞ = 2000 K. For simplicity, a constant value for the specific
heat cp (=1 kJ K−1 kg−1) has been assumed in the numerical integrations that involve cases with ∆cp 6= 0. We point out
that the maximum value of ∆cp used corresponds to ∆cp = 0.5 kJ K−1 kg−1, which sets a realistic range for methane–air
mixtures.
The numerical integration uses an initial step-like profile, with both θ = 1 and Y = 1 at t ′ = 0 within a region around

z ′ = 0 (ignition zone), and zero elsewhere. For t ′ > 0, Eq. (7)–(9)may develop a front that propagates at a constant speed. As
an example of this type of solution, Fig. 1 shows the leftwards propagation of both Y and θ profiles at t ′ = 0, 100, 200, 300 and
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Fig. 1. Profiles of the dimensionless temperature θ (solid lines) and dimensionless mass fraction of products Y (dashed lines) obtained at five different
dimensionless time t ′ by numerically solving Eqs. (7)–(9) for Le = 1,∆cp/cp = 0, n = 2, β = 2. Note the initial step-like condition at t ′ = 0 and that both
profiles almost perfectly match.

400 for a combustionmodel with Le = 1,∆cp/cp = 0, n = 2 and β = 2. Note that, from Eq. (5), the condition n = 2 is equiv-
alent to a linear dependence of the heat conductivityλ on temperature T (as in Ref. [4]). In addition the conditionβ = 2,with
the values of T0 and T∞ assumed above, corresponds to a value for the activation energy Ea ≈ 30 kJ/mol, which is reasonable
for these types of problems [18]. Nevertheless, the sensitivity of the methods here employed to changes in the activation
energy, and hence, in β is investigated in Sec. III. Profiles of dimensionless temperature θ match almost perfectly those for
Y shown in Fig. 1. The dimensionless burning velocity c ′ corresponds to the propagation speed of the front shown in Fig. 1.
This value is obtained by a linear fit of the distance corresponding to the front position with Y = 0.5 with respect of time.

3. Methods to estimate the burning velocity

Here we give generalized expressions for estimating the dimensionless flame speed c ′. We have obtained them by
extending several approaches by including the power law dependence of transport coefficients on temperature, as well as
the possibility of species with different specific heats. The mathematical derivations of these new expressions are detailed
in the corresponding appendices.

3.1. Williams approximation

Several approximations to the burning velocity make use of a parameter called the burning-rate eigenvalueΛ deduced
from both the energy conservation equation and the conservation equations of species (see Appendix A). In one of these
approximations, Williams [4] works in the phase space for the ∆cp = 0, Le = 1 and constant transport coefficients case,
finally deriving both upper and lower bounds for the burning-rate eigenvalue and, hence, for the front flame speed.We have
extended this method for the more general case n 6= 0 and ∆cp 6= 0 from which the dimensionless burning velocity c ′W
reads (see Appendix A)

c ′W =

√√√√√∫ 1
0 dθ

Fϕn−2
θ

(
1+ ∆cp

cp
θ
)

[
1+ 1

2
∆cp
cp

(
1+ 1

Le

)] , (13)

where ϕ and F are given by Eqs. (10) and (11), respectively.
The numerator in Eq. (13) can be easily obtained through numerical integration. Note that, as discussed in the Appendix

A, Eq. (13) shall be viewed as an approximation to c ′ but not as a bound.

3.2. von Kármán approximation

The burning-rate eigenvalueΛ is also evaluated by von Kármán by assuming a given dependence of θ on Y in the vicinity
of the hot boundary (i.e., the zone with no reactants) [4]. The dimensionless burning velocity c ′K , extended to include n 6= 0
and∆cp 6= 0 becomes (see Appendix B)

c ′K =

√
2
(
1+

∆cp
cp

)−1 ∫ 1

0
dθFϕn−2, (14)

where ϕ and F are again given by Eqs. (10) and (11), respectively.



Author's personal copy

T. Pujol et al. / Physica A 388 (2009) 4959–4972 4963

3.3. Asymptotic analysis with a two zone model

In this method, the flame structure is divided into two zones [4,7,12]. In the convective–diffusive zone, the reaction
rate is negligible, whereas in the thinner reactive–diffusive zone, which is very close to the hot boundary, both reaction
and diffusion are the main processes (see Appendix C). In both zones, the variables are expanded in power-series of the
Zeldovich number β and, then, substituted into the governing equations. Matching conditions between both zones allow us
to determine the burning-rate eigenvalueΛ at different orders of β (see Appendix C). At first order on β , we have

c ′TZ1 =

√
2Le

βα2 (1− α)n−2
e−

β
2α(

1+ ∆cp
cp

) , (15)

whereas at second order

c ′TZ2 = c
′

TZ1

(
1−

1
2
Λ1

Λ0

1
β

)
, (16)

where

Λ1

Λ0
= 6α − 4.688+ Le

2− 2.688∆cpcp(
1+ ∆cp

cp

)2 + 1.688∆cpcp(
1+ ∆cp

cp

) + 2α (n− 2) . (17)

Note that this method is valid only for large values of β . However, as pointed out by Williams [4], Ref. [12] obtains very
reasonable results for β ≥ 2 in a model with constant transport coefficients and equal specific heats. In Section 4, c ′TZ1
and c ′TZ2 values for low β (<2) are shown for illustrative purposes only. Note that Ref. [10] provides an expression of the
burning-rate eigenvalue assuming a temperature dependence of heat conductivity but for the very particular case of no
mass diffusion (i.e. Le→∞) and constant specific heats.

3.4. Zeldovich and Frank–Kamenetskii approximation

Focused on the reaction zone, Zeldovich and Frank–Kamenetskii [20] derived an expression for the burning velocity
which can be easily extended for our n 6= 0 and ∆cp 6= 0 combustion model (see Appendix D). The dimensionless burning
velocity now reads

c ′ZFK =

√
2
∫ 1

0
dθ
(
1+

∆cp
cp
θ

)
Fϕn−2, (18)

where ϕ and F are again given by Eqs. (10) and (11), respectively.

3.5. Kolmogorov–Petrovski–Piskunov approximation

This method consists of working in a reference frame attached to the flame front (i.e., introducing the variable s′ =
z ′+ c ′t ′ in Eq. (9)), and requiring a solution that dies out exponentially s′ →∞. The linearization of Eq. (9), here not shown,
gives the very same expression as in Ref. [1]

c ′KPP = 2

√(
dF
dθ

)
θ=0
, (19)

where F is again given by Eq. (11).

3.6. Upper and lower bounds

Lower and upper bounds may be deduced by extending the variational method developed by Benguria and Depassier in
the analysis of 1D convective–diffusive–reactive equations of a single variable [5,14,15]. The solution for the upper bound
reads (see Appendix E)

c ′UB = sup
[
f ϕn−2

µθ
+ µ

(
1−

∆cp
cp

θ

Le

)]
, (20)

with µ an arbitrary positive function and f given by Eq. (12). Here we choose µ as

µ = sup

√
f ϕn−2

θ
, (21)
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Fig. 2. Dimensionless burning velocity c ′ as a function of n (the exponent in the power lawdependence for bothmass and heat diffusivities on temperature)
obtained by simulations (dots) and by the analytical expressions here generalized. W = Williams method, K = von Kármán approximation, KPP =
Kolmogorov–Petrovski–Piskunov method, ZFK = Zeldovich and Frank–Kamenetskii method, TZ1 and TZ2 = first and second order expressions of the
matching asymptotic expansion method, UB and LB = upper and lower bounds based on the Benguria and Depassier variational principle. Values of the
parameters are Le = 1,∆cp/cp = 0, β = 2.

that substituted into Eq. (20) for the n = 2 (linear dependence of heat conductivity on temperature) and ∆cp = 0 case
reverts to the classical upper bound derived by Aronson and Weinberger [21],

c ′AW = 2 sup

√
F
θ
. (22)

Note that instead of working with a reaction–diffusion equation, we analyze a more realistic convection–reaction–
diffusion equation where density variations arising in the flame front lead to non-zero flow velocities. This implies that
Eq. (20)–(21) for the n = 0 and∆cp = 0 case do not revert to the Aronson and Weinberger classical result.
On the other hand, the variational principle gives us the following lower bound (see, again, Appendix E)

c ′LB = 2

∫ 1
0 dθ

√
gf ϕn−2

(
−
∆cp
cp

1
Leg −

dg
dθ

)
∫ 1
0 dθg

, (23)

where

g =
√
1− θ. (24)

4. Results

Dimensionless burning velocities predicted by the expressions shown in the preceding section are here compared
with the results obtained by numerically integrating the full model Eqs. (7)–(9). We have performed several analyses by
(1) varying the n-exponent for the temperature dependence of bothmass and heat diffusivities, see Eq. (5), (2) using different
specific heats for products and reactants, and (3) varying the value of the Zeldovich number β . All cases take Le = 1 into
consideration since it is very reasonable in premixed laminar flames (see, e.g., Ref. [4]).
Values of the dimensionless flame speed c ′ as a function of n are shown in Fig. 2 for the β = 2, Le = 1 and ∆cp/cp = 0

case. For the particular case of n = 2 (i.e., a linear dependence of heat conductivity on temperature), Fig. 1 shows the
first steps on the propagation of the simulated combustion front. Note that the simulated flame front speed increases as n
increases due to the enhancement of the heat flux that warms up the reactant zone and, hence, the amount of heat produced
by the combustion reaction. In Fig. 2, the expression for the dimensionless front speed c ′K gives the same result than c

′

ZFK
since∆cp/cp = 0 in Eqs. (14) and (18). The upper bound c ′UB provides very reasonable estimates for the flame speed for all
ranges of n analyzed. The rigorous lower bound c ′LB here found also appears as a reasonable approximation.This is not the
case for the c ′K , c

′

ZFK and c
′

W approximations since they reach substantially smaller values than the simulated one for large n.
The method of matching asymptotic expansion applied to the two zone model at first order on the burning-rate

eigenvalue (TZ1 in Fig. 2) overestimates the simulated flame speed at large values of n and underestimates it at low values
of n. The solution at second order (TZ2) gives a better result (although being worst than the upper bound) at low values of n,
whereas it clearly breaks down as n increases. This indicates that the asymptotic expansion method is reasonably accurate
when neglecting the temperature dependence of both mass and heat transport coefficients but it fails when this effect is
taken into account. Note also that, in this case, extrapolating the n = 0 results TZ1 and TZ2 for estimating n 6= 0 cases may
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Fig. 3. As in Fig. 2 but for∆cp/cp = 0.5.W=Williams method, K= von Kármán approximation, KPP= Kolmogorov–Petrovski–Piskunov method, ZFK=
Zeldovich and Frank–Kamenetskii method, TZ1 and TZ2= first and second order expressions of the matching asymptotic expansion method, UB and LB=
upper and lower bounds based on the Benguria and Depassier variational principle.

Fig. 4. Dimensionless burning velocity c ′ as a function of ∆cp/cp for the Le = 1, n = 1 and β = 2 case. W = Williams method, K = von Kármán
approximation, KPP= Kolmogorov–Petrovski–Piskunov method, ZFK= Zeldovich and Frank–Kamenetskii method, TZ1 and TZ2= first and second order
expressions of thematching asymptotic expansionmethod, UB and LB=upper and lower bounds based on the Benguria andDepassier variational principle.

lead to significant errors, with other expressions having a higher accuracy on estimating the flame speed (e.g., the upper
bound UB in Fig. 2).
Note in Fig. 2 that the burning velocity predicted from the KPP method is two orders of magnitude smaller than the

simulated speed (c ′KPP = 0.012 and independent of n).
If the reactant has a higher specific heat than the product, this enhances the burning velocity as shown in Fig. 3, where

dots correspond to simulated values for the Le = 1, β = 2 case, as in Fig. 2, but now∆cp/cp = 0.5 (similar to methane–air
reactions). Note that c ′UB is also a very good estimate for the flame speed although now it is not a rigorous bound since the
assumption Y ≈ θ may not be completely fulfilled for the∆cp/cp 6= 0 case. The lower bound c ′LB gives a better estimate than
c ′K , c

′

W and, especially, c
′

KPP . Indeed, c
′

LB, c
′

ZFK and c
′

TZ1 provide very similar values. In comparison with Fig. 2, the expression
c ′TZ2 derived from the matching asymptotic expansion method in the two zone model provides a better agreement with
respect to the simulated burning speeds, although its accuracy is still poor as n increases.
In Fig. 4 we show the behavior of the front speed for the Le = 1, β = 2 and n = 1 case as a function of the value of

∆cp/cp. Values for ∆cp/cp = 0 and ∆cp/cp = 0.5 correspond to those at n = 1 in Figs. 2 and 3 respectively. Fig. 4 clearly
shows that the accuracy of the upper bound c ′UB is more satisfactory than the other methods, which gives us confidence of
its use in the analysis of front speeds in convection–reaction–diffusion systems [8,9]. However, c ′UB velocities decrease as
∆cp/cp increases, which conflicts with the behavior expected intuitively.
In Fig. 4, expressions from the matching asymptotic method c ′TZ1 and c

′

TZ2 give similar results than the lower bound c
′

LB
and the c ′ZFK approximation. In addition to the c

′

KPP approach, the worst estimates correspond to the c
′

W and c
′

K cases.
The influence of the Zeldovich number β on the dimensionless burning velocity c ′ is shown in Fig. 5, where dots

correspond to simulated values for the Le = 1, ∆cp/cp = 0.5, and n = 1 case. As β increases, the heat released by the
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Fig. 5. Dimensionless burning velocity c ′ as a function of Zeldovich number β for the Le = 1, n = 1 and ∆cp/cp = 0.5 case. W = Williams method,
K = von Kármán approximation, KPP = Kolmogorov–Petrovski–Piskunov method, ZFK = Zeldovich and Frank–Kamenetskii method, TZ1 and TZ2 = first
and second order expressions of the matching asymptotic expansion method, UB and LB= upper and lower bounds based on the Benguria and Depassier
variational principle.

reaction term decreases and, hence, the flame velocity slows down. As expected from the methodology employed in the
asymptotic analysis (see Appendix C), the c ′TZ1 and, especially, the c

′

TZ2 expressions increase their accuracy as β increases.
However, the c ′UB value for all β becomes a very remarkable approximation to the burning velocity. As explained above, the
assumptions applied for the analytical derivation of c ′UB may fail at very large values of∆cp/cp. This is the reason why c

′

UB is
not a rigorous upper bound in Fig. 5. Indeed, analyses with different values of the Zeldovich number β for the ∆cp/cp = 0
case do show that c ′UB is a rigorous upper bound in that case.
In Fig. 5, we may observe that the first order c ′TZ1 expression is not as accurate than the second order c

′

TZ2 at n = 1. At
very large values of β , all expressions except c ′UB tend to predict the same value that underestimates the simulated result.
For low values of β , we have found that c ′W , c

′

K , c
′

ZFK and, even, c
′

LB fail in comparison with simulated data.
Note in Fig. 5, that the KPP expression gives the right order of magnitude for the simulated velocity at very low values

of β , since the reaction term becomes increasingly important in comparison with the diffusive term as β → 0 and the
non-linearity in the governing equations tends to disappear.
Simulationswith several values of the Lewis number Le have been also performed, but they are not shownhere for brevity

since changes in the front speed aremuch smaller than those provided by n (Figs. 2 and 3) andβ (Fig. 5), and the approximate
analytical solutions behave similarly to Fig. 4 (with Le−1 instead of∆cp/cp).
In front propagation research, the recent works study the flame speed c ′ as a function of the velocity v′ of the steady

flow. Thus, for example, Cencini et al. [22] obtain an asymptotic behavior of c ′ ∼ v′/ ln v′ in a steady cellular flow, whereas
Yakhot [23] and Sivashinsky [24] propose c ′ = exp

[
d
(
v′rms/c

′
)a] in turbulent flows with a = 2, d = 1 and v′rms the

dimensionless root mean square field velocity. In our case, the background flow is at rest and v′ arises in the flame front
only, where density variations occur. Nevertheless, it is interesting to analyze the behavior of the burning velocity c ′ as a
function of the mean-averaged value of the dimensionless flow speed in the flame front 〈v′〉. This is shown in Fig. 6 for the
case analyzed in Fig. 3. Also in Fig. 6, we show the results obtained by using the simplified model (open circles).
Since here we work within the laminar regime with low flow velocities, c ′ does not follow the asymptotic behavior

v′/ ln v′. Also for the full model, c ′ does not agree with the expression exp
[(
v′rms/c

′
)a] neither for a = 1 as in Ref. [22] nor

for a = 2 as in Refs. [23,24] when substituting v′rms = 〈v
′
〉. This is not surprising since, as we have already pointed out, we

are analyzing a laminar flame with background flow at rest (v′ is different than zero in the flame front only).
For the simplified model, however, a correlation coefficient equal to 0.95 is obtained for a linear regression of c ′ as a

function of exp
[
v′rms/c

′
]
(as proposed in Cencini et al. [22] for steady cellular flow). Note that the simple model matches

the full one for Le = 1 and ∆cp/cp = 0 as it is assumed in many combustion processes. The generalization to Le 6= 1 and
∆cp/cp 6= 0 leads to a break down of the θ = Y condition. In this case, the use of a single reaction–advection–diffusion
equation with a single variable predicts lower values of the burning velocity. For the n = 0.1, Le = 1,∆cp/cp = 0.5, β = 2
case (lower-left points in Fig. 6), the simple model gives a value of the flame front speed ≈5% lower than that of the full
model. For n = 2.0 differences reach 12%. For data shown in Fig. 5, the n = 1, Le = 1,∆cp/cp = 0.5 and β = 3.5 case gives
a 12% burning velocity difference between the simple (lower value) and the full combustion model. This difference reduces
as the β value diminishes.

5. Conclusions

The aim of the present paper is to provide a detailed comparison between the most common methods currently used
for estimating the values of the dimensionless burning velocity c ′ in laminar flame theory. Our main novelties consist of
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Fig. 6. Dimensionless burning velocity c ′ as a function of the mean-averaged value of the dimensionless flow velocity 〈v′〉 arisen in the flame front due
to density variations for data shown in Fig. 3. Closed circles correspond to simulations from the full combustion model (as in Figs. 1–5). Open circles use a
simplified version of the full combustion model (see text).

taking into consideration a combustion model with both mass and heat transport coefficients dependent on temperature
and, in addition, with species with different specific heats. Therefore, we have developed a complete set of new analytical
expressions for estimating c ′ which take into account the above two assumptions.
In essence, the combustionmodel consists of two components (reactant or fuel and product) with a single-step chemical

reaction. Heat and mass diffusivities follow a power law on temperature, and reactants and products differ in their specific
heats. We allow for flow velocity changes across the flame due to density variations, with background flow at rest in those
zones with homogeneous density. For realistic not very large values of the Zeldovich number β , the numerical integration
of this model leads to front propagation, from which the value of c ′ is obtained. Simulations have been carried out by using
a finite difference method with a Crank–Nicholson scheme.
Analytical expressions for c ′ have been here derived following (1) the Williams burning-rate eigenvalue approximation,

(2) the von Kármán approach, (3) the Zeldovich and Frank–Kamenetskii method, (4) the Kolmogorov–Petrovski–Piskunov
method, (5) the matching asymptotic expansion method in a two zone model, and the variational principle developed by
Benguria and Depassier in order to derive (6) upper and (7) lower bounds. These new expressions account for mass and
heat diffusivities as a function of temperature, Lewis number different than unity and reactants and products with different
specific heats.
Very recently, upper and lower bounds based on the Benguria and Depassier method have been used in the analysis of

the front speed in a simplified combustionmodel with constant transport coefficients andwithout taking into consideration
changes in flow velocities due to density variations across de flame [8,9]. Our results reveal that among the multiple
analytical expressions that may be used for estimating the burning velocity c ′, the upper bound based on the Benguria
and Depassier variational principle gives us the better agreement in comparison with simulated values. In contrast, the
asymptotic expansion method, which has been widely used in the recent studies (see Refs. [7,6,17]), provides poorer
estimates. Indeed, at large values of n, and even for high values of β , the asymptotic expansion method clearly fails and
the upper bound method provides better results. However, in comparison with other analytical expressions that require a
numerical integration of the reaction term (i.e., c ′W , c

′

K and c
′

ZFK ), the asymptotic expansion method often provides a better
estimate, which is very remarkable.
Although the upper bound c ′UB here found is rigorous for the ∆cp = 0 case, it gives us an excellent approach for a

combustion process with different specific heats for reactants and products (i.e. ∆cp 6= 0 case, see Fig. 5). The rigorous
lower bound here found also provides good estimates for the front speed for high values of β .
Although the results here found are very encouraging since they generalize former expressions deduced in Refs. [3–5,

8], and shed light into the behavior of widely used methods, additional studies should be made in order to corroborate the
accuracy of these expressions, especially those involving experimental data. Of particular interest would be to derive some
useful approximationswhen energy losses (radiation aswell as conduction) are included in the combustion process so, then,
pulses rather than fronts propagate.
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Appendix A

In a moving reference frame attached to the front, where s = z + ct , with c the front speed (c ′ = c
√
α2ADH0/β and c ′

being the dimensionless front speed), integrating Eqs. (1) and (3) on s leads to

m ≡ ρ(c + v) = constant, (25)

wherem is known as the mass burning velocity,

ρ(c + v)
∑
i

hiεi − λ
dT
ds
= constant, (26)

where the new variable εi is

εi = Yi −
DM

(c + v)
dYi
ds
, i = R, P (27)

We implicitly assume that the front propagates at z < 0, so YP(s = −∞) ≡ YP0 = 0, T (s = −∞) = T0,
εP(s = −∞) ≡ εP0, and YP(s = ∞) ≡ YP∞ = 1, T (s = ∞) = T∞, εP(s = ∞) ≡ εP∞ = 1.
From Eqs. (25) and (27), Eq. (2) reads

dεi
ds
=

wi

ρ (c + v)
. (28)

In terms of the dimensionless variables ε = (εP − εP0) / (εP∞ − εP0) and θ = (T − T0) / (T∞ − T0), Eqs. (26)–(27) are

ϕn−1
dθ
dζ
= θ − ε +

∆cp
cp
θ (Y − ε) , (29)

ϕn−1

Le
dY
dζ
= Y − ε, (30)

where ζ is the new dimensionless coordinate attached to the front defined as dζ = mds/ (DH0ρ0). We point out that
Eq. (29) has been obtained by evaluating the constant term on the r.h.s. in Eq. (26) at s = −∞.
On the other hand, Eq. (28) in terms of these dimensionless variables reads

dε
dζ
=
Λr
ϕ
, (31)

where

r = (1− Y )
(
e−β

(
1−θ

1−α(1−θ)

)
− e−β

1
1−α

)
, (32)

and

Λ =
ρ20DH0
m2

Ae−
β
α = constant, (33)

is known as the burning-rate eigenvalue [4]. Since the mass burning velocitym is constant, at the cold boundary where the
background flow is still at rest (i.e., v = 0) and the density is ρ0, we obtainm = ρ0c. Therefore, the speed of the flame front
c from Eq. (33) is

c =

√
DH0A
Λ
e−

β
2α . (34)

In terms of the dimensionless front velocity c ′, Eq. (34) gives

c ′ =

√
β

α2

1
√
Λ
e−

β
2α . (35)

Williams [4] obtains upper and lower bounds for the burning-rate eigenvalue Λ by working in the phase space with
Eqs. (30)–(29) constrained to the case n = 0,∆cp = 0 and Le = 1. Under such circumstances, Y = θ and, therefore, a single
equation is needed in order to represent the combustion model.
Here, taking the derivative of Eq. (29) with respect to ζ , with the assumption Y ≈ θ (which is reasonable from the

simulations carried out in Section 1; see Fig. 1) and defining g = dθ/dζ (>0 since the front propagates leftwards), we
obtain

d
(
ϕn−1g

)
dθ

= 1−
Λr
gϕ

(
1+

∆cp
cp
θ

)
+
∆cp
cp

ϕn−1g
Le
+
∆cp
cp
θ, (36)
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which is an ODE with a single variable θ . Integrating Eq. (36) from θ = 0 to θ = 1, and rearranging terms, gives

Λ =

∫ 1
0 dθ

[
1+ ∆cp

cp
ϕn−1g
Le +

∆cp
cp
θ
]

∫ 1
0 dθ

r
ϕg

(
1+ ∆cp

cp
θ
) , (37)

since g(0) = g(1) = 0. For ∆cp = 0, integrating Eq. (36) from θ = 0 to θ , gives the inequality ϕn−1g ≤ θ since Λr/gϕ is
positive for all θ . Williams [4] chooses the upper bound for ϕn−1g (=θ ), from which the eigenvalue becomes a maximum
and, hence, the predicted velocity a minimum. Here, we also use the condition ϕn−1g = θ in Eq. (37) that substituted into
Eq. (35) gives the expression for the dimensionless velocity c ′W shown in Eq. (13) since F =

β

α2
e−

β
α r from Eq. (10). Note that

here, c ′W does not correspond to a rigorous bound due to both Y ≈ θ and ϕ
n−1g ≈ θ approximations.

Appendix B

An approximate formula for the burning-rate eigenvalueΛ is found by von Kármán by dividing Eq. (29) by Eq. (31), which
gives

dθ
dε
=

θ − ε +
∆cp
cp
θ (Y − ε)

ϕn−2Λr
. (38)

As has been done in Appendix A, we assume Y ≈ θ , from which the integration of Eq. (38) from 0 to 1 is∫ 1

0
dθϕn−2Λr =

∫ 1

0
dε
[
θ − ε +

∆cp
cp
θ (θ − ε)

]
. (39)

Following Williams [4], a linear relationship (1− θ) = d(1− ε)may be assumed with d constant, that substituted into
the r.h.s of Eq. (39) gives

Λ

∫ 1

0
dθϕn−2r =

1− d
2
+
∆cp
cp

[
1
2
−
5d
6
+
d2

3

]
. (40)

The simplest approximation proposed by von Kármán is to use d = 0 in Eq. (40) [4], from which the burning-rate
eigenvalue reads

Λ =

(
1+ ∆cp

cp

)
2
∫ 1
0 dθϕ

n−2r
. (41)

Eq. (41) substituted into Eq. (35) gives the dimensionless burning velocity c ′K Eq. (14).

Appendix C

For large values of the Zeldovich number β , an asymptotic analysis applied to a two zone model for the combustion
process predicts a burning-rate eigenvalueΛ that may be used for estimating the front speed [4,7,10,12]. In the outer zone,
the regime is essentially convective–diffusive since the reaction term is negligible. On the contrary, the inner zone, much
thinner than the outer one, is dominated by reaction–diffusion processes. The dependence of ε and Y on θ in this inner zone
may be obtained by dividing Eq. (31) by Eq. (29), (i.e., the inverse of Eq. (38))

dε
dθ
=

ϕn−2Λr

θ − ε +
∆cp
cp
θ (Y − ε)

, (42)

and Eq. (30) by Eq. (29),

dY
dθ
= Le

Y − ε

θ − ε +
∆cp
cp
θ (Y − ε)

. (43)

In the reaction zone, θ ≈ 1, so we define the new variable θ = β (1− θ). Then, Eqs. (42) and (43) read

−β
dε

dθ
=

ϕn−2Λ(1− Y )
(
e
−

θ

1−αθ/β − e−β
1
1−α

)
1− ε − θ

β
+

∆cp
cp

(
1− θ

β

)
(Y − ε)

(44)

−β
dY

dθ
= Le

Y − ε

1− ε − θ
β
+

∆cp
cp

(
1− θ

β

)
(Y − ε)

. (45)
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In this inner zone, the dimensionless variables ε and Y , and the eigenvalueΛ are expanded in terms of algebraic powers
of β [12],

ε = ε0 +
ε1

β
+ O(β−2), (46)

Y = 1−
Y1
β
−
Y2
β2
+ O(β−3), (47)

Λ = Λ0β
2
+Λ1β + O(β0), (48)

that substituted into Eqs. (44) and (45) lead to the following equations at order β0,

dε0
dθ
= −

( 1
1−α

)n−2
Λ0Y1e−θ

(1− ε0)
(
1+ ∆cp

cp

) , (49)

order β−1,

−
dε1
dθ
=

( 1
1−α

)n−2 (
Λ1Y1 +Λ0Y2 −Λ0Y1

(
θ
2
α + (n− 2)αθ

))
e−θ

(1− ε0)
(
1+ ∆cp

cp

)
+

( 1
1−α

)n−2
Λ0Y1

[
ε1 + θ +

∆cp
cp

(
θ (1− ε0)+ Y1 + ε1

)]
e−θ

(1− ε0)2
(
1+ ∆cp

cp

)2 (50)

dY1
dθ
= Le

1(
1+ ∆cp

cp

) (51)

and order β−2,

dY2
dθ
= Le

 θ − Y1

(1− ε0)
(
1+ ∆cp

cp

) + Y1
∆cp
cp

(1− ε0)
(
1+ ∆cp

cp

)2
 . (52)

By applying the boundary conditions in the inner zone, ε0 → 1 and ε1, Y1, Y2 → 0 as θ → 0 (see Ref. [12]), the
integration of Eqs. (49)–(52) gives

Y1 =
Le(

1+ ∆cp
cp
(1− YP0)

)θ (53)

ε0 = 1−

2 ( 1
1−α

)n−2
Λ0Le(

1+ ∆cp
cp

)2 [
1−

(
1+ θ

)
e−θ

]
1/2

(54)

Y2 = Le

(
1+ ∆cp

cp

)2
− Le(

1+ ∆cp
cp

)3 ∫ θ

0

θ1

(1− ε0)
dθ1 (55)

ε1 = −
1

2 (1− ε0)

∫ θ

∞

θ1e−θ1 ×

Λ1
Λ0
+
Y2
Y1
− θ

2
1α − (n− 2)αθ1 +

θ1

(1− ε0)
+

∆cp
cp

(
Y1 − θ1ε0

)
(1− ε0)

(
1+ ∆cp

cp

)
 dθ1. (56)

On the other hand, ε1, ε0 → 0 as θ →∞ (see Ref. [12]), so this boundary condition applied to Eq. (54) implies that

Λ0 =

(
1+ ∆cp

cp

)2
2Le

( 1
1−α

)n−2 (57)
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whereas it applied to Eq. (56) implies

Λ1

Λ0
= 6α − 4.688+ Le

2− 2.688∆cpcp(
1+ ∆cp

cp

)2 + 1.688∆cpcp(
1+ ∆cp

cp

) + 2α(n− 2) (58)

Eq. (48), with Eqs. (57) and (58), substituted into Eq. (35) gives the expression for the dimensionless flame speed at first
order c ′TZ1 Eq. (15) and at second order c

′

TZ2 Eq. (16).
Note that, above, Λ0 and Λ1 are derived by suitably applying the boundary conditions to the solutions for the inner

zone only. The solutions Y and ε for the outer zone, here not shown, contain constants of integration that are identified by
asymptotically matching with the Y and ε solutions for the inner zone (see, e.g., Ref. [12]). We omit this derivation since
we are interested here in the values for the burning-rate eigenvalue rather than in the Y and ε profiles followed by the two
zone model.

Appendix D

The Zeldovich and Frank–Kamenetskii method focuses on the thinner reaction zone, where the thermal gradient is
large [3,20]. Therefore, it is expected that, in Eq. (9), both the diffusive and the reaction terms dominate over the temporal
derivative and also over the cross term ∂θ/∂z ′∂Y/∂z ′ for small values of∆cp. Thus, Eq. (9) reduces to

0 = ϕ
∂

∂z ′

(
ϕn−1

∂θ

∂z ′

)
+

(
1+

∆cp
cp
θ

)
F . (59)

Integrating this equation in the variable q = ϕn−1∂θ/∂z ′ (dq/dz ′ = q/ϕn−1dq/dθ ) from q to 0 gives

q =

√
2
∫ 1

θ

dθ ′
(
1+

∆cp
cp
θ ′
)
ϕn−2F . (60)

Since we assume that the heat flux must equal the energy released by combustion in the reaction zone as the flame
propagates (i.e., λ∂T/∂z = Qm), the dimensionless heat flux q is equal to the dimensionless burning velocity c ′. Thus, the
Zeldovich and Frank–Kamenetskii expression for the front speed c ′ZFK shown in Eq. (18) follows from Eq. (60) with θ = 0.

Appendix E

Rigorous lower andupper boundsmaybe obtained by extending the variational principle formerly developedbyBenguria
and Depassier [5] for 1D convection–diffusion–reaction equations to the full combustion model here analyzed. Introducing
the dimensionless variable s′ = z ′ + c ′t ′ in Eq. (9), with the approximation θ ≈ Y , gives

0 = −(c ′ + v′)
∂θ

∂s′
+ ϕn

∂2θ

∂s′2
+ ψ

(
∂θ

∂s′

)2
+ f , (61)

where

ψ =
n− 1
n
dϕn

dθ
−
∆cp
cp

ϕn

Le
, f =

(
1+

∆cp
cp
θ

)
F . (62)

Since the mass burning velocity m is constant, we obtain ρ(c + v) = ρ0c , or, equivalently in dimensionless variables,
c ′ + v′ = c ′ϕ that used in Eq. (61) leads to

0 = −c ′ϕ
∂θ

∂s′
+ ϕn

∂2θ

∂s′2
+ ψ

(
∂θ

∂s′

)2
+ f . (63)

Defining the phase space variable p = ∂θ/∂s′,which implies pdp/dθ = ∂2θ/∂s′2, Eq. (63) divided by ϕ reads

0 = −c ′p+ ϕn−1p
dp
dθ
+
ψp2

ϕ
+
f
ϕ
, (64)

where p is definite positive with p(0) = p(1) = 0. Multiplying Eq. (64) by g/p with g an arbitrary positive function, and
integrating from θ = 0 to θ = 1, we obtain

c ′
∫ 1

0
gdθ =

∫ 1

0

[
p
(
−
d(ϕn−1g)
dθ

+
ψg
ϕ

)
+
gf
pϕ

]
dθ (65)

after integrating by parts the second term on the r.h.s in Eq. (64).
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Choosing a function g such that
(
−d(ϕn−1g)/dθ + ψg/ϕ

)
> 0 from θ = 0 to θ = 1, and since g, f , ϕ and p are positive,

Eq. (65) leads to the condition

c ′ ≥

∫ 1
0 2
√
gf ϕn−2

(
−
dg
dθ −

∆cp
cp

1
Leg
)
dθ∫ 1

0 gdθ
, (66)

where the use has been made of Eqs. (10) and (62).
The r.h.s. in Eq. (66) corresponds to the lower bound for the dimensionless speed c ′LB shown in Eq. (23), where the g

function is chosen as

g =
√
1− θ. (67)

Note that Eq. (67) assures a positive value for the term within the parentheses in Eq. (66).
Following Benguria and Depassier [14], the upper bound for the dimensionless speed c ′UB is obtained by assuming a set

of trial functions ĝ which satisfy

p
(
−
d(ϕn−1̂g)
dθ

+
ψ ĝ
ϕ

)
=
ĝ f
pϕ
. (68)

This implies that the equality in Eq. (66) holds. Defining c ′
∗
as the supremumof the r.h.s. of Eq. (66) over all the ĝ functions,

c ′
∗
= sup


∫ 1
0 2
√
ĝ f ϕn−2

(
−
d̂g
dθ −

∆cp
cp

1
Le ĝ
)
dθ∫ 1

0 ĝdθ

 . (69)

Since ĝ, f and ϕ are positive functions, Eq. (69) leads to the condition

c ′
∗
≤ sup


∫ 1
0

[
ĝ f ϕn−2

µθ
+

(
−
d̂g
dθ −

∆cp
cp

1
Le ĝ
)
µθ
]
dθ∫ 1

0 ĝdθ

 . (70)

with µ a positive function. Integrating by parts the d̂g/dθ term in Eq. (70), we find

c ′
∗
≤ sup

[
f ϕn−2

µθ
+ µ

(
1−

∆cp
cp

θ

Le

)]
, (71)

which is used in Eq. (20) for estimating the upper bound c ′UB. Note that the existence of well-defined trial functions ĝ may
be easily demonstrated by substituting Eq. (68) into Eq. (64) and obtain an expression for ĝ that does not diverge (see, e.g.,
Refs. [14,8]).
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