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Abstract

The maximum entropy formalism is used to obtain the radiation and matter distribution
functions for radiative systems in steady nonequilibrium states, under the gray approximation.
The radiation distribution function is expanded in a smallness parameter, which vanishes at
equilibrium. In the first near-equilibrium approximation, we derive the results of near-equilib-
rium diffusion theory. This may be regarded as an analogue to the kinetic-theoretical result,
according to which in the first Enskog approximation, the Fourier heat conduction equation is
obtained. The theory is also developed up to the second order, leading to results which apply to
situations further away from equilibrium than those corresponding to near-equilibrium diffu-
sion theory. A simple application is analyzed.

1. Introduction

The thermodynamics of nonequilibrium radiation contains several subtle and
controversial points. Even the concept of temperature is controversial when dealing
with nonequilibrium radiative systems. The classical approach [1-3] makes use of
a matter local temperature and a radiation temperature T,(x, Q. 1) that depends not
only on position and time but also on frequency and direction. This radiation
temperature T, is defined through the following equation [1-3]:

R 1
f,(x,Q,V,t):gm’

with f, the radiation distribution function, x the position, Q the direction of propaga-
tion and v the frequency of radiation, t the time, h the Planck constant and kjp the
Boltzmann constant (in equilibrium states, f, is the Planck distribution function and
therefore, T, = T does not depend on direction and frequency; it does not depend
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either, of course, on x nor ). We may note however, that it would be possible in
principle to follow a similar approach to matter systems, by defining a matter
temperature T.,,(x, 2,,,t) which would depend on the direction of motion @,, and the
velocity c,, of the molecules (2,, = ¢,,/c,,) making use of a definition that could be, for
a classical ideal monatomic nonrelativistic gas with number density of molecules n,
(barycentric) velocity v and molecular mass m [4],

A n m(c,, — v)?
It )= O g | e

with f,, the matter distribution function and A = h/2x. Since in equilibrium states f, is
the Maxwell-Boltzmann distribution function, one would have that in equilibrium
T.m = T [4] and therefore T,,, would not depend on either the direction of motion nor
the velocity c,. Since the energy of a photon is completely determined by its
frequency, and the energy of a particle in the case considered is determined completely
by its velocity, we see that T, plays in the case of matter a similar role to the one
played by T, for radiation. Therefore, if it were strictly necessary to make use of T, in
order to deal with nonequilibrium radiative systems, it could seem reasonable to
expect that it would be necessary to make use of T, in order to deal with nonequilib-
rium matter systems. However, we known that this is not necessary. Either phenom-
enological thermodynamics [5,6], kinetic theory [7-9] or statistical mechanics
[10-12] provide adequate descriptions of nonequilibrium matter systems without
need to complicate their respective theoretical frameworks making use of T,,,. From
this point of view, it seems worthwhile to try to deal with nonequilibrium radiative
systems without the introduction of a radiation temperature that depends on fre-
quency and direction, and such an approach will be followed in the present paper.

It may seem surprising that the statistical-mechanical derivation of the complete
description of radiative systems in equilibrium (the Planck function) has not been so
far extended on nonequilibrium states (recently, a statistical-mechanical generaliz-
ation of the Planck function has been proposed [13] in the framework of nonextensive
statistical mechanics and thermodynamics [14], although this is a different problem
than the one we have just mentioned, in the sense that in [13] one does not assume
that the considered system is not in thermal equilibrium but analyzes the very
interesting possibility of an influence of gravitation on light that might cause a non-
Planckian spectrum in the cosmic microwave background radiation). In fact, a some-
how similar situation has taken place for matter systems: microscopic derivations of
theories of nonequilibrium thermodynamics [5,6,9,15] have often been based on
kinetic theory approaches, although it has been recently argued that information
theory may provide a statistical-mechanical approach that allows to handle more
general situations [16—18].

One further motivation for studying radiative transfer situations is that, in contrast
with matter [19], the distribution function for photons is extremely easy to observe
directly: the intensity spectrum emitted by a black body in thermodynamic equilib-
rium is related to Planck’s distribution function in a very simple way. Is it possible to
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extend this result (the Planckian intensity) to steady nonequilibrium states? This is the
central question we would like to tackle in the present paper. Minerbo [20] applied
the information theory approach to a radiation gas under the constraint of a non-
vanishing radiative flux. Whereas in [20] a monochromatic ensemble of photons is
assumed, in the present paper this assumption will be dropped. On the other hand, it
should be remembered that a thermodynamic theory of radiation should include
a matter content as well. For systems subject to dynamical evolution, this follows from
the fact that the interaction between photons is entirely negligible [2]. We will argue
in the present paper that also for nonequilibrium steady states, the interaction of
radiation and matter is of thermodynamic importance.

The plan of the paper is as follows: In Section 2, we first give a short summary of
information theory. We feel this to be necessary, although a little repetitive, because
the author is convinced that the fact that the motivation for the use of information
theory is obviated in many papers has caused some resistance to accept it as
a reasonable candidate for the statistical-mechanical description of nonequilibrium
systems. We then apply information theory to find out the distribution functions of
radiation and matter. In Section 3, the radiation distribution function is written in
terms of thermodynamical quantities, and we compare our results with those obtained
by previous approaches. In Section 4 we illustrate the results for a specific system and
Section 5 is devoted to concluding remarks.

2. Information theory

As it is well-known [21], a property of the Maxwell-Boltzmann distribution
function is that it is the most probable distribution function for a system of matter
particles among all possible distribution functions such that they are consistent with
the prescribed values of the total number and internal energy of the particles. This
means that, if we choose a microscopic state of the gas at random from among all its
possible microscopic states that are mathematically consistent with given values of the
total particle number and internal energy, then the probability that the chosen
microscopic state has a Maxwell-Boltzmann distribution which is greater than for
any other distribution. It must not be forgotten, however, that in the case of equilib-
rium the former argument leaves place for other possible, less probable, distribution
functions, and we can make use of the Boltzmann equation (which rests on the
assumption of molecular chaos) in order to see that only the Maxwell-Boltzmann
distribution function is consistent with equilibrium states [21]. In spite of this, since
many years ago many authors have tried to extend the most-probable approach to
nonequilibrium states by requiring the satisfaction of additional constraints, such as
the constraint of a given heat flux, etc. [22-24,11]. This idea was independently given
and developed by Jaynes [10], who noted that Shannon’s mathematical theory of
communication allows us to interpret the Boltzmann entropy density of a system as
a measure of the information about the system that is not contained in the distribution
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function. Then the most probable distribution function for a given macroscopic state
of the system will be the one that, even in nonequilibrium states, maximizes the
entropy density of the system under a set of constraints, corresponding to the physical
parameters which specify the macroscopic state of the system. To assert that the actual
distribution function of the particles of a physical system, in nonequilibrium states, has
the property of being the most probable distribution function, is only an assumption,
and is called the principle of maximum entropy. It has been noted many times
[10,25-27] that there is an inherent vagueness in this principle, at least in its present
form, since it does not specify what constraints should be used for a given physical
system. It may therefore be said that in practice one chooses parameters that seem
relevant for the physical situation considered (e.g., the conductive heat flux for the
study of heat conduction), makes use of them as additional constraints, and waits for
the usefulness or inadequacy of the principle to become clear after its predictions are
compared with experimental results. In this respect it is worthwhile to mention that
impressive agreement between the predictions of information theory and experiments
in the field of nuclear physics has been reported by Frohner [28]. On the other hand, it
is adequate to stress that the argument that the entropy cannot be a maximum in
nonequilibrium systems cannot be used against information theory, because when
applying the principle of maximum entropy to nonequilibrium systems what one is
ultimately doing is to choose one among all the possible distribution functions for
a single macroscopic nonequilibrium state (e.g., a state with a given particle number
density, a given internal energy density and a given nonvanishing heat flux), and not
among all the possible distribution functions for any nonequilibrium or equilibrium
state. Another relevant question is how one may, after use has been made of the
principle of maximum entropy, find out constitutive or evolution equations for
the thermodynamical variables of the system. We will deal with this problem at
the point where it becomes necessary to do so (specifically, in the text between
Eqgs. (22) and (23)).

In the present paper, we will make use of the principle of maximum entropy in
radiative transfer situations and will assume for simplicity that the matter part of the
system is a classical ideal gas. The total entropy density of the system is [2,4]

d*pp

S=Sm+S,.:—kBj‘(-2n—h)§

R3

Suln fo

d*p,
2k [ SIGIA+ Hn( +) ~fIn /], (1
R3

where the subindexes m and r stand for matter and radiation (photons), and f and
p are the corresponding distribution functions and momenta, respectively.

We assume for simplicity that the heat flux in the system is only due to radia-
tion. According to the statistical-mechanical definition of the distribution
functions, we have for the total energy density u, matter number density n and
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radiative energy flux F,

4*pm Pm d’p,
U=1uUy,+u = J k) m +2 f L pcts )
R? R?

d’pp

n= J‘ Qi ™ (3)
RJ
d*p,

F=2 [ S peet,. @

R3

where the matter has been assumed to be composed of nonrelativistic monatomic
molecules for simplicity, and ¢ is the photon velocity, i.e., a vector of length the
velocity of light in vacuum ¢ and direction corresponding to that of the photon
motion. Although a matter (or conductive) heat flux and the matter velocity can be
treated as additional constraints [6,16], they are not included here for the sake of
simplicity, i.e., we neglect heat conduction and also heat convection (the matter gas is
assumed to be at rest). We make use of the principle of maximum entropy, by
maximizing Eq. (1) under the constraints (2)—(4). In this way, one finally obtains for
the distribution functions

p2
fm=exp[_1_l_ﬁﬁj]’ &)
fo=1/(exp[Bp,c —y-p,cc] — 1), (6)

with A, f and y Lagrange multipliers (the minus sign in front of y is chosen for later
convenience).

Substitution of Eq. (5) into Eq. (3) and integration over all possible values of
Pn yields

_exp[—1—i] (2nm\*?
= (5)

where the integral has been solved with the use of formula 3.461-2 of Ref. [29]. From
Eq. (7) we can write the matter distribution function (5) as

3/2 2
fou = Qut)n (57%) exp [ 5 ;’71] , ®)

which, when inserted into u,, given by Eq. (2) yields, after integration,

™

3n

=35
Eq. (8) corresponds, as we shall explicitly see when we introduce the concept of

temperature for our system, to the Maxwell-Boltzmann distribution function. Eq. (6)

Um

©



280 J. Fort | Physica A 243 (1997) 275-303

is a nonequilibrium result from information theory that has appeared from time to
time in the literature [20,30-33,16]. However, its use leads to more complicated
integrals than the use of Eq. (5), and for this reason it is better to follow the approach
in [16]: we assume that the z-axis can be chosen parallel to y, so that y = (0,0, y). Then,
insertion of Eq. (6) into u,, given by Eq. (2), and into Eq. (4) and integration over all
possible values of p, yields, respectively,

n? 3462
TR (12 (10)
472 £
F = <O909 45C2h3ﬁ4 (1 _ 82)3> = (anaF)a (11)

where the integrals have been solved with the use of formula 3.411-1 of Ref. [29] and
we have defined ¢ through

85(0,0,8)5(0,0, C-’) (12)
B

We note from Eq. (11) that the simplifying assumption that the z-axis can be chosen
parallel to y implies that we are dealing with situations in which the radiative heat flux
F has the direction of the z-axis.

Since the radiative energy density must according to Eq. (2) to positive, Eq. (10)
implies that —1 < ¢ < 1. From now on we will for simplicity fix our attention into
situations such that F > 0, thus according to Eq. (11) we have 0 <& < 1.

Eqgs. (10) and (11) allow to find out ¢ in terms of F and u,

_ 2 — /4 —3(F/cu,)?

¢ F/cu,

(13)

From Eq. (13) it is easy to see that ¢ is a strictly increasing function of F/cu,. Thus,
we may interpret the parameter ¢ as follows: in equilibrium, the photon velocities are
distributed in an absolutely random way (in direction) so that the radiation is
isotropic and according to Eq. (4) F = 0, which in view of Eq. (11) or (13) implies that
¢ = 0. For F # 0, the system is not in equilibrium and, the higher the value of F/cu, is,
the more ordered (or anisotropic) the radiation is and the higher the value of ¢ is. As
the well-known maximum value F — cu, (which follows from Eq. (4) and u,, given by
Eq. (2)) is approached, aimost all of the photons move in the same direction and
¢ approaches its limiting value (¢ — 1). Thus, ¢ may be regarded as a smallness
parameter that measures how much far away from thermodynamic equilibrium the
system 1is.

The radiative entropy density is, according to Eqgs. (1),(6) and (12),

2kB 1 _ 4752](3 1 »
S, = d(znh):; j d3pr [ln(l +ﬁ') +ﬂln (1 +ﬁ>} = 45C3h3ﬁ3 (1 _ 82)2 s (14)
't
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where the necessary integrals have been solved applying the procedure in p. 186 of
Ref. [2] and formula 3.411-1 of Ref. [29]. Making use of Eq. (10), the radiative entropy
(14) may be written as

_ 4n'%ky 5, (1 =)

G S N Er R )

which implies that for a given value of u,, the radiative entropy decreases with
increasing ¢, i.e., with increasing order of the system. It is possible to show that Eq. (15)
is equivalent to the corresponding equation for a purely radiative system that has been
obtained both on macroscopic grounds [34] and through rather cumbersome in-
formation-theoretical calculations [31,16]. Since we clearly have s, = 0, Eq. (14)
implies that f > 0 and Eq. (12) implies that y > 0.

Egs. (10) and (11) also allow for F to be written as

F =(0,0,F) = 4cu,e/(3 + ¢%). (16)
On the other hand, the radiative pressure tensor is [35]
2 r d3p
P = . rs 7
=2 | G (1)
R3

with (cc);; = ¢;c;. Eq. (17) may be written, after insertion of (6), integration with the use
of formula 3.411-1 of Ref. [29], and use of Eqgs. (12) and (10), as

=g 0 0 |
R-:ur 5 2 1—‘82 0 s (18)
3rel 0 1+3

which in equilibrium (¢ = 0) reduces, as it should, to P, = 1u, U, with U the identity
matrix, and in the extreme nonequilibrium limit ¢ — 1 becomes

0 0 0
P—-u |0 0 0,
0 0 1

\

also a well-known result both from classical electrodynamics [40,1] and the quantum
theory [36].

3. Identification of the Lagrange multipliers

The information-theoretical photon distribution function (6) depends on the para-
meters f§ and y (or ff and &), which must be related to measurable quantities if we want
to compare the predictions of the theory with experiment. In order to do this, let us
consider for a moment a matter system composed of a nonrelativistic monatomic
classical ideal gas. The temperature T of the system is usually defined through the
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following equation [5,7] (recall that in the present paper u,, stands for the internal
energy per unit volume, not per unit mass)

Up = 3nkyT , (19)

both in equilibrium and in nonequilibrium states. We will here make use of this
expression, so that we find from Eqgs. (19) and (9) that

1

B= T (20
and Eq. (8) becomes the Maxwell-Boltzmann distribution function for a gas at rest
(see note [4]). [t may be argued that there is no reason to accept the validity of Eq. (19)
as a definition of temperature, since the system considered is composed not only of
matter (monatomic ideal gas) but also of radiation. It is true that Eq. (19) gives
a purely statistical definition of T, but it is shown in Appendix A that the definition
(19) of T 1s equivalent, for the system considered in this paper, to the thermodynamical
definition of temperature (i.e., the inverse of the partial derivative of the specific
entropy with respect to the specific energy of the system, which in our case is
composed of matter and radiation). Now since in our system there is radiation in
addition to matter, one might be tempted to require, in analogy with Eq. (19), that
u, = aT* (with a = n2k3/15¢3h? the blackbody constant), a well-known equilibrium
relationship [2]. However, we have already defined T by means of Eq. (19) and shown
that this definition corresponds to the thermodynamical concept of temperature. We
cannot introduce a new definition for T. Then there is no reason to think that
u, = aT* is valid outside equilibrium. Even if the relationship u, = aT * does hold in
some nonequilibrium states [36,38] (this will indeed be shown to be so in the present
paper), it should not be taken as an ad hoc postulate in any statistical-mechanical
theory. In other words, since this result, namely u, = aT*, is derived by equilibrium
statistical mechanics, any nonequilibrium statistical mechanical approach should
derive, not assume: (i) its validity in the special case of thermodynamic equilibrium,
and (ii) its validity, or the validity of a more general law, in nonequilibrium states. In
fact, all of these considerations say nothing really new, but it is in this spirit that we
may follow Mihalas and Mihalas [38] and introduce a parameter T, through

u, =aT?, (21)

and keep in mind that T, is just a parameter related to the radiation part of the system,
but in general has no thermodynamical meaning (see Appendix A), so that the use of
T. in nonequilibrium is justified only as a way to characterize arbitrary radiation
fields, a conclusion that has been stressed previously [38].

1t follows from Egs. (10),(20) and (21) that the radiation parameter T, is related to
the temperature of the radiation-matter system as follows:

o L@

’ (1—e?)¥* e
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In the first line of this section it has been pointed out that both f and &
must be related to measurable quantities. In other words, we need two equations in
which only B, ¢ and measurable quantities (such as T) appear. We have so far
only one such equation, namely Eq. (20). In order to find out another one, we
may recall that we have seen in Section 2 that ¢ is related to the anisotropy of
the radiation field; on the other hand, the radiation anisotropy is expected
intuitively to be related to the temperature distribution (for example, we may think
about a star: there are more photons moving in the outwards radial direction than
inwards, and the temperature decreases with increasing distance to the stellar
center). Therefore, we expect ¢ to be related to the temperature distribution in the
system. However, we shall find that the radiation anisotropy (and, therefore,
both the parameter ¢ and the radiation distribution function) is related not only to
the temperature distribution but also to the interaction processes between the
matter and radiation (in fact, this can also be expected intuitively by thinking
about the case of a star: if almost none of the photons created by the nuclear
reactions in the interior of the star interact with matter before leaving the stellar
surface, we expect the radiation to be extremely ani-sotropic, whereas in the
case the most photons are absorbed by matter before reaching the surface, their
energy will be reemitted in all directions and the radiation field inside the star will
be less anisotropic than in the previous case). Before going ahead, however, a
short comment about a rather more general information-theoretical problem will
be useful.

Any general statistical-mechanical method for nonequilibrium systems must cer-
tainly be able to find out constitutive and evolution equations for the system variables.
For example, it should be able to derive, as a special case, Fourier’s law of heat
conduction for matter systems. However, the principle of maximum entropy on its
own is unable to attain such a goal, simply because all it yields is an expression for the
distribution function. Many authors have overcome this difficulty by combining
maximum-entropy distribution functions with other methods, such as the Boltzmann
equation [11], the Liouville equation [41] or the nonequilibrium statistical operator
method [42,43,17]. With this perspective, we have looked for an evolution equation
for the radiation distribution function in order to combine it with the former
information-theoretical results. We have decided to make use of the radiative transfer
equation, because in spite of its mathematical simplicity (as compared, e.g., with the
Boltzmann equation for matter systems) it is extremely successful, up to the point that
it is almost always used in radiative transfer problems (see, e.g., [36-39]). In the
present paper we will for simplicity consider only steady-state situations, a rather
usual attitude in information theory (see, e.g., [6,16,25]). Moreover, in order to
construct a simple model that allows for the fundamental features of our approach to
be stressed without much mathematical complexity, we make the following simplify-
ing assumptions: the absorption coefficient x does not change appreciably with the
frequency of the photons (the gray or one-group approximation [36]), and scattering
and induced processes can be neglected. Under these assumptions the radiative
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transfer equation reads [36,37]

~

Q'Vlv: _K1v+j\'y (23)

where Q = ¢/c is the unit vector in the photon direction of motion, I, is the intensity of
radiation, j, is the emission coefficient and we have made use of the fact that we are
considering steady states. We are therefore assuming the same equation as in almost
all of the existing studies on radiative transfer, and it is to be noted that it includes two
interaction coefficients x and j,. These coefficients, which play a role similar to that of
the elastic (and reactive) cross-sections in the Boltzmann equation for matter systems,
depend on a multitude of microscopic processes and can for this reason be found out
only by means of lengthy quantum—mechanical calculations [36].

As it is well-known [44,45], multiplication of Eq. (23) by Q, integration over all
frequencies and solid angles and use of the expressions for P, and F already mentioned
in note [35] yields

cV-P.= —kF, (24)
with
3 0P,
V-P)= Lt
(V-Py= Y

From Egs. (18) and (11), we have respectively, P, =0 for j # i and F =(0,0,F).
This allows us to write Eq. (24) more explicitly,

OP,

C rii _ —KFi:() (i=xgy)’

0x,~

&: — kF. -
oz

Eq. (25) will be used to relate the nonequilibrium parameter & = (0,0, £) (see Eq. (12))
to measurable quantities. In order to find out the radiation intensity in nonequilib-
rium steady states, we shall also need the following equation, which follows from
the general relationship between I, and f,, already mentioned in note [35], and from
Egs. (6), (12) and (20),

[ 2hv3 1
Vo2 hv A '
ol —e. -1
exp [kBT(l £ Q):l

Because of mathematical complexities, we have not succeeded in developing the
model presented here in exact analytical form for systems arbitrarily far away from
equilibrium states. We will therefore consider three cases, increasingly further away
from equilibrium.

(26)
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According to Section 2, this corresponds to thermodynamic equilibrium. For ¢ = 0,
Eq. (26) reduces, as it should, to the Planck function, i.e., I, = I, pancx, With

2hv? 1
I, Planck = _C‘i- e"”"‘TT 5 (27)

Eq. (22) yields T, = T, and Egs. (21), (16) and (15) reduce to u, = aT*, F =0 and
s, =%aT?3, also as they should [2]. Finally, Eq. (18) yields P, = (aT*/3)U and
substitution of the former results for P, and F into Eq. (25) yields VT = 0, so that the
temperature of the equilibrium system is uniform, as it should.

3.2. First-order approximation

Up to the first order in the nonequilibrium parameter ¢, Eq. (22) gives T, = T and
Egs. (21), (16) and (18) yield, respectively,

u, =aT* + 0(?), (28)
4acT? 5
F = 3 e+ 0(e?), (29
T4
P="3-U+06), (30)

where we have recalled that & = (0,0, ¢) (see Eq. (12)). From Egs. (25), (29) and (30) it
follows that, in the first-order approximation, ¢ may be written in terms of measurable
quantities as

1
s=(0,0,8):—EVT, (31)

so that Eq. (29) becomes

4acT3
K

F = VT + 0(£?). (32)
At the same order of approximation, the radiation intensity can be obtained by
expanding Eq. (26) up to first order in the smallness parameter ¢. This yields, making
use also of Eq. (31),
3 1 2 2.4 hvikpT N
=2 hv ¢ VT-0 + 0(2). 33)

CZ ehv/kg’l‘ -1 kBCZKTZ (ehv/kgT __ 1)2

Eq. (33) is the main result of near-equilibrium diffusion theory [46], an approximate
description of radiative transfer which has been previously obtained [36,38]. It is very
encouraging that this result also follows from the method used here, although the
spirit of the present approach and those in [36,38] are very different. In [36], one
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assumes that I, consists of an isotropic term and a first-order anisotropic correction
(the Eddington approximation), which when introduced into Eq. (23) leads, after
neglecting second derivatives and making use of the additional assumption of radi-
ative local thermodynamic equilibrium (i.e., the assumption that j, = kI, pjanek, Which
has been discussed at length in [39]), to the same result (Eq. (33)). A somehow similar
derivation can be found in [38]. The author of [36] explicitly notes that it seems
rather surprising that a reasonably accurate description is obtained on the basis of s0
many assumptions, namely: the Eddington approximation, the neglect of second
derivatives of the isotropic term and radiative local thermodynamic equilibrium. In
contrast, in the present statistical-mechanical derivation the accuracy of near-equilib-
rium diffusion theory is not surprising, since we have only assumed the principle of
maximum entropy (which is not used in [36 and 38]) and a single additional
assumption, namely that the state of the system is near equilibrium. As we have seen,
this last point is expressed mathematically as the assumption that the photon
distribution function can be expanded up to first order in the nonequilibrium that the
photon distribution function can be expanded up to first order in the nonequilibrium
parameter ¢&. Moreover, the present approach allows, as we will see in Section 3.3, to
consider systems which are further away from thermodynamic equilibrium than those
described by near-equilibrium diffusion theory.

It has been previously noted [38], on the basis of Eqgs. (32) and (28), that the
near-equilibrium result (33), which applies to radiative systems, is closely analogous to
the first Enskog approximation [7] to conductive matter systems: in both cases,
a near-equilibrium state is assumed and it is found that the energy density is fixed by
the local temperature, and that the heat flux is proportional to the temperature
gradient (Eq. (32) is a radiative analogue to the Fourier heat conduction equation).
We have apparently provided a much simpler derivation of all these radiative results.
One may then conclude that information theory is a very useful complement of the
radiative transfer equation, in the sense that it makes it possible to drop many
assumptions that are necessary in other approaches. Whereas a somehow analogous
informational-theoretical analysis for matter systems is well-known [11,6], and shows
that information theory is a very useful complement to the Boltzmann equation, the
corresponding analysis of radiative systems had not been carried out before.

It is also worthwhile to note that the near-equilibrium expression (33) is valid for
small values of ¢, £ < 1. From Eq. (31) we see that this condition may be written as

IVT|

<K. (34)

It is interesting to compare the condition (34), which ensures the validity of the
first-order maximum-entropy approximation to radiative systems, with the condition
that ensures the validity of the first Enskog kinetic-theory approximation to conduc-
tive, purely matter systems. This last condition reads [47] |VT|/T < 1, with [ the
mean-free path. However, the mean-free path of a photon is precisely k ~ ! [36], so that
condition (34) is equivalent to the one just recalled. This once more reinforces the
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analogy between the first-order maximum-entropy theory for radiative systems and
the first Enskog theory for matter systems.

3.3. Second-order approximation

One of the differences between previous approaches [36,38] and the one presented
in this paper is that the latter provides a general formalism that is not restricted to
near-equilibrium states. However, we will now see that mathematical complexities
arise when considering far-from-equilibrium situations.

Up to second order in the nonequilibrium parameter &, Eqs. (16) and (18) yield,
respectively, making use of (21),

dacT?
F= “‘3 s+ 0(), (35)
1 00
T4 4aT?
p,=“3'u+ “9'82 0 —1 0|+0(Y, (36)
0 0 2

\

where it is to be noted that the radiation parameter T, appears. Its relation with the
temperature of the radiation-matter system is obtained by expanding Eq. (22) up to
second order in the smallness parameter e,

T.=T (1 +%€2) + 0(e?). (37

In order to find out the radiation intensity we need, as in Section 3.2, an expression
for ¢ in terms of measurable quantities (we stress that T is a measurable quantity,
whereas T, is not). This mathematical problem is not straightforward in general.
However, in Appendix B it is shown that, for the simple case in which T depends only
on the z coordinate and the temperature gradient is uniform, we have

1
£=(0,0,6)= —— VT, (38)
kT
so that the first-order result (31) remains valid up to second order also.
The intensity is given by the second-order expansion in the smallness parameter &,
obtained from Eq. (26). This yields, making use of Eq. (38),

Iv = Iv Planck[1 + ¢1 + ¢2] + 0(63) 3 (39)
with
hv ehviksT R
¢y = — kT2 el _ | vT-Q, (40)
2,2 Y R
prm ol L vy gy, (41)

= UEKIT* (T — 1)2
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We can note that, insofar as they yield an expression for the intensity of nonequilib-
rium radiation that generalizes a first-order expression (Eq. (33)) that is closely
analogous to the first Enskog approximation for matter systems, Egs. (39)—(41) may
be regarded as a radiative analog of the Burnett (or second Enskog) approximation
for matter systems [7].

4. Application

In order to illustrate the results of the model, let us consider a simple radiative
system, namely a cavity with highly absorbing internal walls and containing an ideal
gas (see Fig. 1). It is very important, in order to grasp the physical state of the system,
that in view of the direction dependence in Eq. (26), there is an anisotropic emission of
radiation by the internal walls of the cavity in nonequilibrium situations. Such
a conclusion could also have been advanced intuitively in a simple way by considering
the case of a star instead of a cavity. Any small part of the gas and radiation in a star
can be regarded as a cavity with highly absorbing internal walls and a nonuniform
temperature (and thus a nonvanishing net radiative energy flux F), such as that shown
in Fig. 1 (in this case the z-axis would correspond to the outwards radial direction of
the star). This picture is at the very basis of the theory of stellar structure [37] and in
this case, instead of the solid walls of the cavity depicted in Fig. 1, we only have
particles of gas. But the radiation intensity is anisotropic at any point of the star, and

w3/

lF z>0

NP
A"

¢ N

Fig. 1. Cavity containing an ideal gas. Radiation may leave the cavity through one or several small
apertures, which in the figure are located at points A, B, C and C’. If the temperature at the walls varies with
the z coordinate and decreases downwards, the system is in a nonequilibrium state and there is a nonvanish-
ing net radiative energy flux F inside the enclosure.
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specifically at the points that would correspond to the solid walls of the cavity
in Fig. 1.

In order for our results to be applicable, let us assume that the walls of the enclosure
are heated in a way such that the system reaches and maintains a stationary
one-dimensional temperature distribution T(z) (see Fig. 1). In order to prevent
convective effects, we assume that T decreases downwards (i.e., with increasing
z,dT/dz < 0). In fact, as far as the author knows, such an experiment has not been
proposed or carried out before, except in the well-known equilibrium case
(dT/dz = 0), for which the blackbody intensity is observed to be Planckian, in
agreement with the results of equilibrium statistical mechanics.

4.1. First-order approximation

Let us consider the predictions of the first-order maximum-entropy theory, i.e.,
of near-equilibrium diffusion theory (the second-order theory will be used later on
in order to find out under which conditions the first-order results can be treated).
According to Eq. (32), there will be a radiative energy flux F > 0 in the direction
shown in Fig. 1. We want to study the intensity of the radiation that leaves the
enclosure through a small aperture, which may be located at different places (e.g., at
points A, B,C and C’ in Fig. 1). This is directly measurable experimentally. We first
note that, according to Eq. (33),

2hv? 1 22yt oMksT T .
I, = 2 T 1 kpclkT? (T 1) Ecos@ + 0(&%), (42)

where 6 is the angle between the direction Q corresponding to I, and the z-axis, and
both T and dT/dz may depend on the z-coordinate in general.

It might seem inconsistent that Eq. (42) depends only on the thermodynamical
quantities T and VT: one would expect intuitively the distribution function of
radiation at, say, point B in Fig. 1, to depend on the values of T in all the points of the
walls of the enclosure. This apparent inconsistency is solved as follows: the condition
(34) for the near-equilibrium expression (42) to be a good approximation reads in the
considered case

|dT/dz|
—T <K, 43)
which means that Eq. (42) may be applied if the absorption coefficient is large enough
to compensate for the variations of T along the cavity, in the sense that the absorption
of the radiation emitted at, say, points A, C and C’ in Fig. 1 as it travels towards point
B is responsible for the fact that the radiation at point B does not depend on the values
of T at, say, points A, C and C’, but only on the values of T at points very close to
point B, i.e., on the values of T and dT/dz at point B.
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Since I, is an intensity per unit solid angle [36,37], the intensity emitted by the
cavity i, due to the photons that, coming from all possible directions, leave the
enclosure through the aperture A in Fig. 1, is

2n 2
Iya= jd(pj dfsinfcosO1,,. (44)
0

0

Similarly, i, at the other apertures in Fig. 1 is given by

2n n
ig= — qua'[ dfsincos 61 5. (45)
0 )2
2n n/2
ice= f dy | dysinycosyl,c, (46)
0 0
2n n
i = — j dy J dysinycosyl,¢ , 47)
0 /2

where the new angles introduced in Eqs. (46) and (47) take into account the fact that
the apertures located in points C and C’ are not normal but parallel to the z-axis; it
may be seen (either directly or by means of formula 10.92 of Ref [48]) that
cos § = sin y sin . Taking this into account, substitution of Eq. (42} into Egs. (44)—(47)
and integration yields

2rhy? 1 4nh?v* dT e"1kaTa 5
ha= CZ ehv/kBTA —1 - 3kBC2KTi E A (ehv/kxT,\ _ 1)2 + O(EA)o (48)
2mhv3 1 4mh*vt 4T ehviksTs
5= el 0(c2), 4
v c?  eMikeTe _ g + 3kgc?kT3 dz | (e™FeTe — 1)2 + Olen) (“49)

2rthy3 |

e = e = 20 g + 00 (<0

where we have taken into account that T = T, since points C and C’ in Fig. 1 have
the same value of z. We note that, up to first order in ¢, the intensities emitted through
the apertures C and C’ are Planckian.
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We can also find out the total energy fluxes g = [ i,dv leaving the cavity by
integration of (48)—(50). This gives

ac py 200 o dT 2
qa 4 TA 3;( TA d A+0(SA N (51)
ac ., , 2ac 5 dT 2
qs 4 Tx I Tg iz B+0(GB), (52)
ac
Gc=4qc =— T+ 0(@d), (53)

4

where the necessary integrals have been solved with the use of formulae 3.411-1 and
3.423-2 of Ref. [29]. In equilibrium (¢ = 0 and dT/dz = 0), Egs. (51)—(53) become the
Stefan—Boltzmann law g = (ac/4) T #, as they should.

We will now give some rough numerical estimations of the nonequilibrium spectral
distributions with the intention that the possibility of comparing them with experi-
ment becomes made as clear as possible.

For the spectral intensity distribution i, emitted per unit wavelength by the
blackbody (4 = ¢/v stands for the wavelength), in equilibrium one would have the
usual Planckian expression,

2ncth 1

I/l Planck — 115 he/kaTA 1 (54)

e

whereas in the near-equilibrium diffusion theory, it is easy to see from Egs. (48) and
(49) that

2nc’h 1 4ncdh? |dT MelkTAR ;
lia = 25 pheksTar _ | + 3kBKTi)~6 E (ehC/kaTA). _ 1)2 + O(ex), (595)
2nc’h 1 4ncdh? |dT|  eteiksTez )
I,g = 75 gheksTei _ | - 3kBKT12;},6 E (e"C/ksTsi - 1)2 + Of(eg), (56)

where for simplicity we have considered states such that the temperature gradient is
uniform and we have recalled that we are considering situations such that dT/dz < 0.

Assuming that T, = 2000 K, T = 2001 K and x = 10 m~ ' [49], we plot in Fig. 2
the intensity spectrum according to Eqgs. (55) and (56) for uniform temperature
gradients of —5 K/m (so that the distance between the points A and B in the cavity
depicted in Fig. 1 would have to be 20cm, and Eq. (31) yields g4 = 2.5x 1074,
eg = 2.499 x 107 %) and — 10 K/m (so that the distance between points A and B in
Fig. 1 would have to be 10 cm, and (31) yields ey = 5x 107%, g5 = 4.998 x 10~ *). The
dashed lines in Fig. 2 correspond to the equilibrium spectra, i.e., those that would be
emitted by the blackbody cavity shown in Fig. 1 if the temperature gradient vanished,
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Fig.2. Spectra of the radiation emitted by the cavity shown in Fig. 1 through the apertures A and B in
near-equilibrium steady states (full curves), for T, = 2000 K, T = 2001 K, x = 10m ™" and a uniform
temperature gradient of —5K/m (a) and —10K/m (b). Equilibrium spectra (dashed curves) with
T, =2000K and Ty = 2001 K are included for comparison.

and have been obtained from Eq. (54) with T, = 2000 K and T = 2001 K. Since we
are considering near-equilibrium situations, a plot over a wide spectral region would
make all curves to appear superimposed, so that Fig. 2 only shows a narrow
wavelength range near the maximum of intensity. The corrections with respect to the
equilibrium results are of about 0.1% in Fig. 2a and of about 0.2% in Fig. 2b, which
should be measurable.

4.2. Second-order approximation

We have seen that in the previous estimations the nonequilibrium smallness
parameter ¢ is only of the order of 10™* This is much less than unity, so that the
system should be near equilibrium and we expect the former first-order results to hold.
However, we may carry out a more elaborate approach making use of the second-
order maximum-entropy theory.

We consider again the physical situation depicted in Fig. 1. According to Egs.
(39)—(41), the second-order expression that replaces the first-order result (42) for the
intensity may be written as

Iv = Iv Planck(T)[l + 51(T7VT)C059 + 52(T3VT)COSZB:| + 0(83) s (57)
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with

hv Mk qT
kgT? e®*sT — | d7°

1 hZ ,2 hvikgT 1 2
F,T.VT) = L ze“V/"ﬂT<d—T> . (59)

$(T.VT) = — (38)

2 k22T (eMhsT — 1) dz

Making use of Eq. (57) into Egs. (44)—(47), we find
iva = 7Ly pranc(TA [T+ 3 G1(Ta, VT) + 362(Ta, VT)] + O(e3) , (60)
ive = 7Ly pranek(Te) [1 = 5G1(Ts, VT) + 32(T5. VT)] + O(c3) , (61)
ive = iver = T pranek(Te) [1 + 5 $2(Te, VT)] + O(ed) . (62)

We note that, in contrast with the first-order (or near-equilibrium diffusion) result
(50), the intensity (62) emitted by the cavity through the apertures C and C’ in Fig. 1 1s
no longer Planckian when second-order terms are taken into account, and we find
that Egs. (55) and (56) are replaced, also in the second-order approximation, by

ira = izptanck(TA)[1 + @11 (Ta. VT) + ¢52(Ta, VT)] + O(eR), (63)
i1 = izptanck(Te)[L — @31 (Tu, VT) + ¢22(Ts. VT )] + Ofe)., (64)
with

he ehctksTr 4T

T.VT)= — = —
1 (T.VT) 3 kyeT 27 e"MsTh 1 dz° 63)

hzcz ehC/knT/1+1 . dT 2

$22(T.VT) = 4 KT T e (~d;> : (66)

In the former subsection we have obtained first-order corrections with respect to
the equilibrium spectra. These corrections were found to be about 0.1% or 0.2%.
When the same values for T,,Tg, x« and dT/dz as those used in the previous
subsection are used into Eqgs. (63)—(66), it is seen that the second-order corrections
with respect to the equilibrium spectra are only of about10~*%. This confirms the
reliability of the first-order results in the situation considered, as it was expected
intuitively on the basis of the small values of the parameter ¢ (which are of the order of
1074

The fact that the second-order corrections are so small in the former cases make us
expect that the first-order theory should be reliable in situations further away from
equilibrium than those considered up to now. This is interesting from two points of
view: it will yield higher corrections, thus it will make it easier to compare the theory
with experiments; and it will give us some quantitative feeling of the range under
which near-equilibrium diffusion theory is valid. We note from Eq. (38) or (31) that, for
a fixed value of the temperature, the nonequilibrium parameter ¢ can be increased
either by considering higher values of the norm of the temperature gradient or lower
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values of the absorption coefficient. If we consider as before T, = 2000 K and
Ty = 2001 K, it is possible that higher values of the temperature gradient than those
assumed up to now could be interesting in the context of astrophysics or plasma
physics applications, but not in order to carry out the experiment proposed in Fig. 1 in
the laboratory since in that case the distance between the points A and B would have
to be extremely small. On the other hand, lower values of the absorption coefficient
can be obtained simply by decreasing the density of the gas in the cavity [51,49]. Let
us therefore consider the case k = 0.1 m~'. We also assume dT/dz = — 5 K/m. In this
case Eq. (38) yields g4 = 0.025 and &g = 0.02499, and from Egs. (55) and (56) we find
out the first-order spectral distributions, which we plot in Fig. 3(a). The dashed line in
Fig. 3(a) corresponds to the equilibrium (or Planckian) spectra (Eq. (54)) at the
temperatures T, = 2000 K and Ty = 2001 K, which are not distinguishable from each
other in Fig. 3(a). Somehow similarly, Fig. 3(a) in fact also includes second-order
spectra (obtained from Egs. (63)-(66)), but they are not distinguishable from the
first-order ones. Therefore, in Fig. 3(b) we show the same spectra for the aperture A as
those in Fig. 3(a), but only for a narrow wavelength range near the maxima of
intensity (We note from Fig. 3(b) that in nonequilibrium, the maximum of intensity is
not the same as in equilibrium. This indicates that the nonequilibrium steady-state
extension of the Planck function dealt with in the present paper leads to an extension

T A T T T T T
4 [N .
’ Ay
? AN
; \
: \
lI B \\
1 \\
3 4
— ! N
E : \
1 A
o~ f \
E ; ~
E 2| 7 \ 4
v N
Q
[7s] \3
2 N\ :
~
< q b 4
4
0 1 1 L 1 ! J
0 1 2 3 4 5 6

(a) A (um)
Fig.3. Spectra of the radiation emitted through the apertures A and B by the cavity shown in Fig. 1 in
nonequilibrium steady states (with T, = 2000 K, T = 2001 K, k = 0.1 m™' and a uniform temperature
gradient of —35K/m), compared with equilibrium spectra (dashed curves). The dashed curve in (a)
corresponds to equilibrium (or Planckian) spectra with T, = 2000 K and T = 2001 K (these two spectra
are not distinguishable from each other in this figure), whereas the full lines A and B correspond to the
nonequilibrium spectra (the first- and second-order spectra are not distinguishable from each other in (a)
either). (b) shows the same spectra as (a) for the aperture A, but only in a narrow wavelength range near the
maxima. In this way, we can distinguish the spectrum, emitted through the aperture A and obtained
according to the first-order theory (dotted line), from the second-order one (full line). The equilibrium

spectrum, for a temperature of 2000 K is shown as a dashed line.
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Fig. 3. (Continued).

of Wien’s displacement law. We plan to deal with this topic in future work). From
Figs. 3(a) and 3(b), we find that the first-order corrections with respect to the
equilibrium spectra are as large as 8.5%, whereas the second-order approximation
yields an additional correction of about 0.4%. It may be noted that even in this case
(in which ¢ is of the order of 1072), the first-order theory gives reasonably accurate
spectra. On the other hand, Figs. 2 and 3(a) are easy to understand keeping in mind
that the emission of radiation by the internal walls of the cavity in Fig. 1 is anisotropic
(see the text at the beginning of this section): the emission is stronger in the downwards
directions in Fig. 1 than in the upwards ones.

We conclude that, at least in the simple situation considered here, the model yields
measurable predictions for the radiative properties of steady nonequilibrium systems,
and that such predictions go beyond those corresponding to near-equilibrium diffu-
sion theory.

5. Concluding remarks

A model for the description of matter-radiation systems in steady non-
equilibrium situations has been presented. Since conductive and convective effects
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have been neglected, we have considered situations in which heat transfer is purely
radiative.

The theory presented here is based on the principle of maximum entropy and on the
steady-state radiative transfer equation (23). This model includes a smallness para-
meter ¢ that is a measure of how much far away from thermodynamic equilibrium the
system 1s. The first-order approximation yields the same results as the so-called
near-equilibrium diffusion theory of radiative transfer, without need of the additional
assumptions that are necessary in previous approaches. This maximum-entropy
first-order theory may be regarded as a radiative analogue of the first Enskog theory
of matter systems. It has been shown that information theory provides a general
framework in order to deal with further away from equilibrium situations, and the
second-order approximation has been solved analytically in a simple case. This leads
to an expression for the intensity of radiation (Egs. (39)—(41)) that may be tested
experimentally.

Some of the directions along which it would be interesting to extend the present
model are the following.

(i) To try to consider situations arbitrarily far away from equilibrium in order to
try to predict deviations from Planck’s spectrum due to arbitrarily high-temperature
gradients. This will probably turn out to be a mathematically complicated, but
physically interesting problem. A typical situation is found in the outer layers of stars.
For example, making use of the standard solar model results for x and T into Eq. (31),
we find that at the center of the Sun ¢ is only of the order of 10~ 1# [52], so that ¢ < |
and the intensity spectrum is thus extremely close to Planckian in spite of the
nonvanishing temperature gradient. On the other hand, at the solar surface (31) yields
e 0.5 [52], so that the first-order theory should be expected to become invalid. The
theory developed in the present paper should be extended to situations arbitrarily far
away from equilibrium in order to be able to cope with so strongly anisotropic
radiation fields.

(1)) To drop the assumption that the absorption coefficient is independent of
frequency, in order to try to obtain more realistic predictions to be compared with
experimental results. Similarly, it would also be of interest to include scattering and
induced processes. In fact, it is straightforward to see that the present model allows for
the inclusion of out-scattering simply by replacing the absorption coefficient x in all
equations by the total interaction coefficient (i.e., the sum of the absorption coefficient
and the scattering coefficient [36]).

(iii) To try to find out specific applications that allowed to compare the present
model with different statistical-mechanical [13] and kinetic—theoretical [53]
approaches that also yield nonequilibrium corrections to the Planck distribution
function.

(iv) To try to extend the present model into a much wider conceptual framework,
by replacing the entropy density (1) and constraints (2)—(4) by those given by the
generalized axioms of the recently introduced nonextensive statistical mechanics {14].
The ultimate goal would be, of course, to obtain results that improved agreement with
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experimental results in radiative transfer situations, in a similar way to what has
already been done for a large variety of physical systems (see the last paper in [14] and
the references therein).

(v) The present approach may be useful in order to discuss in detail the concept of
temperature in nonequilibrium systems (see Appendix A). However, this is a subtle,
difficult and controversial topic [6,45,54—60] and it would therefore seem proper to
consider several kinds of nonequilibrium systems (not just radiative ones) in order to
address it adequately.
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Appendix A. Proof of consistency between Eq. (19) and the thermodynamical definition
of temperature

Let §,, and #,, stand for the matter entropy per unit mass and internal energy per
unit mass, respectively. They are related to the matter entropy and internal energy
densities, used in Section 2, through

Su="", (A1)
p

i, = m (A2)
0

where p = mn is the matter density. The radiation entropy and energy per unit mass of
matter are, respectively,

5,=—, (A.3)
p

i, =2 (A4)
P

We will first obtain an equation for dS,, from information theory.
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From Eq. (1) we have

dsn= ks [ S Con d 10 1 df

3df
R}
. [ @Pm d*pp pm .
= koi | Gt dfo+ kal [ S PR, (A3
R3 R3

where we have made use of Eq. (5). According to Egs. (3) and (2), Eq. (A.5) may be
written as

dsy, = kgidn + kpfdu,,. (A.6)

On the other hand, insertion of Eq. (5) into s,,, given by Eq. (1), and use of Egs. (3)
and (2) yields

Sm = kg(1 + A)n + kgPu,,. (A.7)
From Eqgs. (A.1), (A.6) and (A.7) we find

3, = B” 2T du, + ky(Bu, + n)d (p) (A.8)

where we have recalled that p = mn. Making use of Eq. (A2), Eq. (A.8) may be written
as

ds,, = kgfdii,, + kgnd (%) . (A9)

The former equation refers to the matter content of the system. We now look for
a similar expression for ds,. From Egs. (1) and (6) we find that

dp,
ds,=2k,,j(2 5)3 27 0+ 1)~/ in 14,

d*p, d*p,
2kn j S peedf = 2kay [ s pcedf,. (A10)
R3

which may be written, making use of Eqs. (2} and (4), as
ds, = kgfdu, — kgy-dF . (A.11)

On the other hand, Eq. (14) may be written, making use of the blackbody constant
definition a = n2k§/15¢3h3, as

4a 1

e (A.12)

5, =
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From Eqs. (A.3),(A.11),(A.12) and (A.4) it is found that

d§,=k,;ﬁda,+(—kﬂﬂu,+%flﬂ3a~_lg—z)z>d(%>—%y dF . (A.13)

This information-theoretical result applies to the radiation part of the system, in the
same way as Eq. (A.9) applies to the matter part.

The two components, namely matter and radiation, are mixed together in the
physical system under consideration, and interact with each other through absorption
and emission processes (any photon in the system has been emitted by matter and will
sooner or later be absorbed by matter). Therefore, a thermodynamic (i.e., macro-
scopic) description must refer to the composed system and not to matter and radiation
separately. Let us denote the total entropy and energy densities per unit mass by
§ = s/p and 4 = u/p, respectively. We have, in accordance with the first equalities in
(1) and (2), and to Egs. (A.1)-(A.4), that § = §,, + §, and & = 4, + 4,. Making use of
Eqgs. (A.9) and (A.13) we find that

d§=kB,Bdﬁ+(an ks fu, +3k4aﬂ3 i ! )> <1> kp” dF. (A14)
We note that § does not depend only on & and p, but also on F. Heat-flux depend-
encies of the specific entropy have been studied many times in purely matter systems
(see, e.g., [33] and references therein). The dependence that we have noted from (A.14)
is analogous to those just recalled, with the difference that in our case it is the radiative
flux F instead of the conductive flux ¢ that appears.

If we require that the temperature should be defined thermodynamically through
1/T = 05/01, we see from Eq. (A.14) that § = 1/kgT. This is precisely Eq. (20), which
has been obtained from the statistical definition of temperature (19). We therefore see
that, in the case considered, it is equivalent to make use of Eq. (19) or of 1/T = ¢§/dii in
order to define T. We conclude that the quantity T, defined through (19), is the
thermodynamical temperature of the system. We also conclude that the quantity T,
defined through Eq. (21), has no thermodynamical meaning at all, and should be only
regarded as one way to parametrize the radiation field.

Here we have only paid attention to the first term of those on the right-hand side of
Eq.(A.14). A detailed analysis of the remaining terms is useful for the discussion of the
generalized temperature of extended irreversible thermodynamics [6,54—58]. This
concept has still not been dealt with from a statistical-mechanical perspective in
radiative transfer situations [45], and it would be interesting to do so. However, we
stress that this is not a straightforward but a very subtle and controversial [ 54—60]
problem and we defer it to future work. On the other hand, a relevant point here is to
note that use of (20) into Eq. (A.14) yields, in thermodynamic equilibrium (F = 0 and
therefore ¢ = 0 and y = 0, see Egs. (13) and (12)),

1. 1
d§=?du+<k,,n+37_>d(—>, (A.15)
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where we have made use of the fact that u, = aT #, which is obtained from Eq. (10) in
equilibrium and Eq. (20). The differentials in (A.15) should be regarded as small
differences of the corresponding quantities between closely equilibrium states of the
system. At this point, and in order to avoid confusion, it is better to denote such
differentials by means of the symbol ¢ instead of d. Then Eq. (A.15) reads

. 1 u, \ . [1
S—?5u+(k5n+ﬁ>0<;>

Since we are now dealing with equilibrium situations, all quantities are uniform and
by integration of this result over the whole mass of the system one immediately finds,
as it should be, consistency with well-known equilibrium results: the phenomenologi-
cal equilibrium Gibbs equation for the system, namely

1 Pm + Pr

88 == oU
T 7T

oV,
(with S = {§dm, U = {iidmand V = [ dm the total entropy, total energy and volume
of the radiation-matter system, respectively) and equations p,, = nkgT and p, = u,/3.
Appendix B. Derivation of Eq. (38)

For the purpose of this appendix, we will need to find out P,,, and u, in terms of

T and &, up to second order in ¢. One way to do this is to substitute Eq. (37) into (36)
and (21). This yields

T4
P, = % (1 + 652 + O(e%), (B.1)
u, =aT*(1 +126%) + 0(e3), (B.2)

and Eq. (B.2) generalizes the well-known equilibrium relationship u, = aT*. We will
also need to write down F in terms of T and &, but up to third order in &. This can be
easily done from Egs. (16) and (B.2),

_4acT?
T3

F (1 + 3%z + 0(eY). (B.3)

As we shall now see, it is not easy to find out an expression for ¢ in terms of
measurable quantities at the present level of approximation. We shall therefore not
deal with the general solution for &, but with a special, the simplest possible case, by
considering situations such that both T and & depend only on the z coordinate (the
compatibility of both conditions is an ansatz to be checked a posteriori). In this case
we may write down the second Eq. in (25), making use of (B.1) and (B.3), as

1/1 .\ dT de K
—{= 2 ) — — = ——¢g(l + 3&?). B4
T(3+2F)dz+8dz 3.s( + 3¢%) (B.4)
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From this equation and keeping in mind that we are interested in second-order
results we obtain

bo (1433 4L 3 d

Ted R (B.5)

It is easy to see that in case we had not included the third-order term in (B.3),
Eq. (B.5) would have missed a term that is relevant at the present level of approxima-
tion. One may also easily check that the first Eq. in (25) is satisfied in the considered
case. Nevertheless, in contrast with the first-order result (31), Eq. (B.5) is not still an
explicit expression for ¢ in terms of measurable quantities. We may however make use
of the method of successive approximations [61]. We assume that the result (31) can
be considered as a first subapproximation,

e =(0,0,sM) = —LVT. (B.6)
kT
Let us, again for simplicity, consider states such that VT = (0,0,dT/dz) is uniform.
Inserting the value given by Eq. (B.6) for ¢ on the right-hand side of Eq. (B.5), and
calling £'? the left-hand side we obtain
£ =(0,0,6?) = — V—T (B.7)
kT

This is a very simple result, because it is the same as (B.6), which corresponds to the
first subapproximation. Indeed, it is easy to check that (B.7) is, in fact, the exact
solution of Eq. (B.5) or (B.4) in situations such that the temperature gradient is
uniform. Therefore, we can assert that in such situations

e=—(1/xT)VT (B.8)

is the analytical solution for the nonequilibrium parameter ¢ = (0,0, ¢) working not
only up to the first, but also up to the second-order of approximation. This completes
the derivation of Eq. (38).
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