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Abstract

Information theory yields different predictions for the radiation intensity of nonequilibrium
radiative systems, depending on what quantity one identifies with the temperature. A possible
experiment is proposed that may, in principle, be used in order to determine whether the gen-
eralized temperature of extended irreversible thermodynamics is the measurable temperature in
nonequilibrium radiative systems or not.

1. Introduction

In thermodynamic equilibrium, the entropy S of any system is a function of exten-
sive variables, e.g. of the internal energy U and the volume V. The temperature T of
the system can be introduced phenomenologically through T—' = 8S/8U [1]. Under the
local-equilibrium hypothesis, the local entropy per unit mass s depends on the corre-
sponding quantities per unit mass, e.g. on the specific internal energy u and the specific
volume v, and the temperature can be introduced phenomenologically as 7! = ds/du
[2]. In the same way as local-equilibrium thermodynamics generalizes the analysis of
equilibrium systems in order to cope with near-equilibrium states, the possibility to
generalize local-equilibrium thermodynamics has been considered many times. The ex-
perimental and conceptual limitations of the local-equilibrium approach, for example
for fast phenomena or systems characterized by long relaxation times, are well known
(see, e.g., Ref. [3] and references therein). Some of the limitations in question may
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be avoided in the framework of extended irreversible thermodynamics (EIT) [3-7].
Within this approach, the local-equilibrium hypothesis does not hold in general and
the specific entropy depends not only on the local-equilibrium independent variables
(such as u and v) but also on the dissipative fluxes, such as the conductive heat flux q.
By analogy with the thermodynamics of equilibrium and local-equilibrium systems,
it seems reasonable to introduce the temperature phenomenologically through 7! =
0s/0u. However, this is an open problem, because such a procedure has deep conse-
quences. For example, for a classical nonrelativistic monatomic ideal gas it is found
[3,8] that outside local-equilibrium 7 does not coincide with the kinetic “temperature”
T,,, which satisfies that

_ 3kgTn
“= 2m

, (1)

with £z the Boltzmann constant and m the molecular mass.

This topic may at first sight seem a purely academic exercise (or, even, simply
a notational discussion). However, it has been predicted phenomenologically that, in
general, the heat flux is proportional to V7, rather than to VT, and this is a strong
point for the claim that 7, rather than T, is the measurable temperature [9,3]. More
generally, since the properties of macroscopic systems depend on their temperature and
EIT yields different results for T and 7,,, for a given value of the temperature, obtained
by the experimental reading of a thermometer, the predicted properties will be different
if we assume that this value corresponds to 7" than if we assume it corresponds to 7.
In fact, several experiments have been recently proposed in order to check whether
T is the quantity measured by a thermometer in nonequilibrium or not [9-12]. In
the case of a highly photoexcited plasma in semiconductors, it has even been found
that comparison of theory and experiment seems to point to the conclusion that the
temperature 7' of EIT is the quantity measured by a thermometer [12]. However, more
research on this topic is certainly necessary, both theoretically and experimentally,
before a definite conclusion can be reached. It would, of course, be desirable to address
the problem in a variety of nonequilibrium systems. In the present paper, we will tackle
the problem making use of a recent information-theoretical approach to nonequilibrium
radiative systems [13], which was motivated in part by the fact that, in contrast with
matter [14], the radiation distribution function is very easy to observe directly by
means of an spectrophotometer. We shall see that, within such a statistical approach,
the predictions for the radiation intensity show observable differences depending on
whether one assumes that the quantity measured by a thermometer is the temperature
T of EIT or the local-equilibrium temperature of the considered system. An important
difference between the analysis presented here and those referred above is that we will
consider the question of the generalized temperature for radiative systems: the heat
flux is due to radiation instead of matter. We will see that in this case new features
arise, but not only with regards to the temperature of EIT: even the expression for
the local-equilibrium temperature must be reformulated. In this way, the problem of
the measurable temperature outside equilibrium will be shown to be more general and
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its importance will become even more clear than previously expected. The plan of the
paper is as follows: in Section 2, we sum up some previous results that are necessary
for the present discussion. In Section 3, we compare the predictions for the radiation
intensity in the case that the temperature of EIT is assumed to be the measurable
temperature with those in the case that the local-equilibrium temperature is assumed to
be measurable for arbitrarily far-from-equilibrium states. Section 4 is devoted to some
concluding remarks.

2. Summary of information-theoretical results for the radiation intensity

We consider a system composed of matter and radiation under a radiative heat flux
F. One such simple system is a cavity with highly absorbing internal walls, one or
several small apertures (see Fig. 1) and containing a classical nonrelativistic ideal gas
composed of monatomic molecules. As in Ref. [13], heat conduction and convection
are ignored (i.e., we assume the matter heat flux ¢ and barycentric velocity to be
negligible). If the temperature of the system were uniform, there would be no net
radiative heat flux (F = 0) and the intensity of radiation emitted through the apertures
would be Planckian. We consider the more general case in which the temperature may
depend on the vertical coordinate z. In this case it is clear from considerations of
symmetry that F = (0,0,F), with F # 0, in general. In order to prevent convective
instabilities, we assume that the temperature decreases downwards (so that in Fig. 1
the temperature at the aperture B is higher than that at the aperture A). We choose
the positive vertical direction downwards, so that ' > 0. We propose to generalize the
usual EIT concept of nonequilibrium temperature to this system, which is composed
of both matter and radiation, by defining

Twl _ a(sm+sr)
O+ )’

with s,, and u, the specific matter entropy and internal energy, respectively, and s,
and u, the radiation entropy and energy, also per unit mass of matter. Maximization of
the total (i.e., radiation and matter) entropy density of the system under the constraints
of given total energy density, matter number density and radiative heat flux yields for
the radiation intensity, after use of the steady-state gray radiative transfer equation and
assuming that the gradient of 7 is uniform [13],

(2)

L =19 + 0() = Lppan(T[1 + ¢ (T, VT cos 6

~(2

+3P(T,VT)cos? 0] + O, 3)
where 0 is the angle between the direction corresponding to 7, and the positive z-direc-
tion (the downwards vertical direction in Fig. 1), and l,pianck the Planck function,
namely,

2m3 1
IvPlaan(T) = o2 W ’ (4)
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Fig. 1. Experiment proposed in order to determine which quantity corresponds to the measurable temperature
in radiative nonequilibrium states. The figure represents a cavity with highly absorbing internal walls and
containing an ideal gas. Radiation may leave the cavity through the small apertures A and B. The temperature
is assumed to decrease in the vertical downwards direction. F is the radiative heat flux.

with 4 the Planck constant, v the radiation frequency and c the velocity of light in
vacuo. The first- and second-order corrections to the Planckian intensity are,
respectively,

hv th/kBT

kg T2 kT — 1

dT
dz

) 1 A2y ehviksT 4 g wisr { 4T ?
¢ (T, VT) = zkérczT“ (T~ I)Ze v/ks I 6)

$rvr) = , (5)

with x the absorption coefficient. Eqgs. (3)—(6) were obtained in Ref. [13] by performing
a MacLaurin expansion up to second order in a parameter ¢. This parameter satisfies
that 0<e<1 (¢ = 0 corresponding to equilibrium and ¢ = 1 to the free-streaming
case), it is a measure of how far away from equilibrium the system is, and may be
written as (see Ref. [13] or Appendix A to the present paper)

1
£=(0,0,s)=—ﬁVT. 7N

Photons interact with matter with a mean-free path / = 1/« [15], so that ¢ = ({/T)|dT/
dz|. Tt tums out that this expression is exactly the same as that obtained for the
smallness parameter which is used in the Chapman—Enskog Kkinetic theory of heat
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conduction in gases. Since in this case there is experimental evidence from ultrasound
propagation and shock waves that & is, indeed, a valid nonequilibrium expansion pa-
rameter [16], we consider that: (i) it seems reasonable to make use of this smallness
parameter in heat radiation, and (ii) the second-order approximation (3) should break
down for high enough values of ¢. We also mention that the first-order approximation,
e Iy = Lpne (D)1 + ¢ (T, VT )cos 0] with & (T, VT) given by Eq. (5), coin-
cides with the results of near-equilibrium diffusion theory, which is an approximate
description of nonequilibrium radiative systems that had been previously derived on
phenomenological grounds [15,17].

In order to compare Egs. (3)—(6) to experimental measurements, one must first of all
take into account that a spectrophotometer does not measure the intensity of radiation
for a given direction, but the intensity of all photons that cross a unit area coming from
all possible directions of a hemisphere. For this reason, and considering, for example,
the apertures A and B in Fig. 1, the directly measurable intensities are

w2
iy = /d(p/dﬁsinﬁcosﬁlv,, R (8)
0 0
2x n
ip = —/dw/stinOcosBIvg. (9)
0 72

Finally, use is made of Egs. (3)~(6) to integrate Eqs. (8) and (9) and the results are
expressed per unit wavelength (4 = ¢/v), instead of per unmit frequency. This yields

(13]
) 3y _ . ) @ 3
ia = ij5 + O(€x) = Liptanck(Ta)[1 + ¢, (Ta, VT) + ¢;7(Ta, VT)] + O(e3)

(10)
@ 3y _ (O @ :
i =g + O(ep) = iptanck(Ta )1 = ¢ (T, VT) + ¢, (Te, VT)} + O(ep) ,
(11
with
' 2mcth 1
iptanck(T7) = 5 ohekaTi _ 17 (12
2 he ST\ 4T
VT =2 dz
G LN = T At 1 | 2z | "
2
@ 1 KPP R (AT
GV = e B R e \d& ) t

In order to compare these expressions with experimental data, it is necessary to
address another item, namely whether the EIT temperature T is the quantity measured
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by a thermometer or not. Note that T has been introduced by means of Eq. (2).
However, there are several possible ways to introduce a temperature-like variable for
the system. One may in principle consider 7,,, defined by Eq. (1), or one may also
follow the usual approach in radiative transfer, namely to introduce a quantity 7,
through [17]

w, = aT* | (15)
For the system under consideration we have [13]
T,=T, (16)
T, =T(1 + &)+ O(£). 17

Eq. (16) would not hold in the presence of heat conduction or convection [3,8]. On
the other hand, it has been argued [17,13] that 7, is just a parameter related to
the radiation part of the system, but, in general, has no thermodynamical meaning.
In equilibrium we have ¢ = 0 and therefore T = 7, = T,, so that Eq. (2) im-
plies that T,_1 = O(Sm + $»)/0(tm + u,). These results are valid in equilibrium. They
would also hold in case all equilibrium relations were assumed to hold locally, but
their validity breaks down in general nonequilibrium states (see Eq. (17)). There-
fore, 7, may be called the local-equilibrium temperature of the considered system.
The explicit expression for the entropy and the generalized Gibbs equation can be
found out, and this yields a formalism that closely parallels that of the EIT theory
of conductive and convective systems [18]. However, here we would like to go be-
yond the conceptual discussions considered so far and will show that the problem of
whether 7 or 7, is the quantity measured by a thermometer can, in principle, be solved
experimentally.

3. A proposal in order to determine experimentally which quantity is measured by
a thermometer

The second-order intensity, Egs. (3)—(6), is written in terms of 7. If we want to
compare the measurable predictions of the theory with those that would result from
the assumption that the local-equilibrium radiative temperature 7, (instead of 7) is
the measurable temperature, we must write the intensity in terms of 7, instead of
T. In order to do so, we need to express € in terms of 7, and its gradient, just as
Eq. (7) relates £ with 7' and its gradient. Eq. (7) was derived in Ref. [13]. A different
derivation is included in Appendix A to the present paper, where it is shown that &
may also be written, in the same order of approximation, as

1
€=(0,0,¢) = TNT

r

V7T, . (18)
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We make use of this result and of Eq. (17) into Egs. (3)~(6). After neglecting
higher-order terms we obtain that the expansion, Eqs. (3)~(6) may be written in terms
of T, as
z(1)
I, = I9 + 0(6®) = Liptanak(T)[1 + &, (T, VT, )cos
7(2)

+¢3(T,, VT ) cos? 0 + ¢O(T,, VT, + OE) (19)

with
(1) = 2 20)
BT = e 5| ey
$9ahvn)=%hiiﬁéﬁﬁzj$fwmn(%g){ (22)
(ziz)(Tr,VTr) = _%kBZ:Tg ehve;::/:i : (%)2’ (23)

We note that the presence of q%z)(T,,VT ) in Eq. (19) implies that 1P is a function
of T, and VT, that differs from the function /{*) of 7 and VT (see Egs. (3)—(6)). This
has the consequence that, if at a given point in Fig. 1 we measure, e.g., a temperature
of 2000K and an absolute temperature gradient of 15K/m, we will obtain different
predictions for the intensity if we assume that T is measurable temperature (i.e., T =
2000K and |dT/dz| = 15K/m) and apply 1$¥, obtained from Egs. (3)H6), than if we
assume that T, is measurable temperature (i.e., 7, = 2000K and |d7,/dz| = 15K/m)
and apply Iv(,z), obtained from Eqgs. (19)~23). Let us assume, e.g., that k = 10m~!
(see Ref. [13]). Then in the first case (7 = 2000K) we would have, according to
Eq. (7), that ¢ = 0.075 and Eq. (17) yields 7, ~ 2009K, whereas in the second
case (7, = 2000K) we obtain from Egs. (18) and (17) that T ~ 1991K. Thus,
the differences between 7 and 7, are less than 0.5%. However, we shall see that
even such small differences lead to differences between the predictions for the directly
measurable intensities that are higher than 2%. This could provide an experimental
way to determine what quantity is the measurable temperature. We also mention that
the result, Egs. (19)~(23), for the radiation intensity in terms of 7, is analogous to the
information-theoretical nonrelativistic matter distribution function in terms of 7, that
has been derived previously (see Egs. (30)—(34) in Ref. [19]).

Making use of Egs. (19)—(23) into Egs. (8) and (9) we obtain, instead of Eqgs.
(10)(14),

i1 = igA+O(E) = imptanc(Tra) 1+ 85, (Toa, VT +93(Ta, VT +O0(E)
(24)

i = i+ O(&2) = iaptanck(T8)[1 — ¢ (Tr, VT,) + ¢ (s, VT,)] + O(ed)

AB irB B APlanck\ £ rB i \LrBs r ya \LrBs r B/>
(25)
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Fig. 2. The two full lines in this figure correspond to the spectra of radiation emitted by the cavity shown
in Fig. 1 through the apertures A and B, according to the second-order approximation and assuming that the
generalized temperature 7 of EIT is the measurable temperature. It has been assumed that 74, = 2000K,
Tg = 2001K, |d7/dz| = 15K/m and x = 10m~'. Planckian and first-order spectra (dashed and dotted
lines, respectively) are included for comparison.

with
. 2ncth 1
lA"Planck(Tr) = 15 ehchsTi _ 1’ (26)
2 ke ksl g
(1) _“ Zr
rd (,,VT,) = 3 kBKTrZ/l ehclksTd _ 1 | dz | (27)

1 ke 1
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Fig. 3. The same as in Fig. 2, but assuming that the local-equilibirum temperature 7T,, instead of T,
is the quantity measured by a thermometer. It has been assumed that 7,5 = 2000K, 7,g = 2001K,
|dT,/dz} = 15K/m and x = 10 m—!. As in Fig. 2, the Planckian or zeroth-order spectra corresponding

to both apertures in Fig. 1 are barely distinguishable from each other (dashed lines).

In order to carry out some estimations, let us assume that the measured temperatures
in Fig. 1 are of 2000K in point A and 2001K in point B, that the absolute temper-
ature gradient is 15K/m (so that the distance between A and B would be of 6.7cm)
and, as in Ref. [13], that k = 10m~!. Making use of these values, we will obtain
different predictions depending on whether we assume that 7' or 7, is the measurable
temperature:

(i) Assuming that T is the measurable temperature, we have T4 = 2000K, Tg =
2001 K and |dT/dz| = 15K/m. The predicted spectra for the radiation emitted through
apertures A and B, obtained from Egs. (10)-(14), are plotted in Fig. 2. In addition to
iﬁz), equilibrium and first-order spectra are also included in Fig. 2 for comparison. The
zeroth order or equilibrium spectra, denoted by izpianck in Fig. 2, are not distinguish-
able from each other at this scale (the dashed line in Fig. 2 consists, in fact, of two
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Fig. 4. Those spectra from Figs. 2 and 3 that correspond to the aperture A are reproduced here in a narrower
wavelength range. This allows to estimate the differences between the second-order spectra, predicted by
information theory in case T is assumed to be the measurable temperature (full-line) with those predicted
in case 7, is assumed to be the measurable temperature (dashed—dotted line).

closely similar spectra). The first-order spectra correspond to 1.21) = Lplanck (T)[! + ¢f{1)
(T,VT)].

(ii) Assuming that 7, is the measurable temperature, we have 7, = 2000K, 7,5 =
2001 K and |d7,/dz| = 15K/m. The predicted spectra for the radiation emitted through
apertures A and B, obtained from Eqgs. (24)—(28), are plotted in Fig. 3. Because in
this case the second-order corrections are smaller than in the previous one, a different
scale has been used in the figure. Of course, the zeroth- and first-order spectra are
the same in both figures, because Eq. (12) is the same function of 7 as Eq. (26) is
of T,, and Eq. (13) is the same function of T and |dT/dz| as Eq. (27) is of 7, and
|dT,/dz|. The differences in the predictions arise in the second-order theory, and are
due to the fact that Eq. (14) is not the same function of 7 and |d7/dz| as Eq. (28) is
of 7, and |dT,/dz|. In order to evaluate these differences, in Fig. 4 we plot the same
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spectra for the aperture A as in Figs. 2 and 3 (the main conclusions would not change
if the aperture B were considered). The spectra in Fig. 4 have been plotted around a
narrow wavelength interval near the maxima (we may note that Wien’s displacement
law does not hold outside equilibrium, but this interesting point is discussed elsewhere
[20]). From Fig. 4 we find that the first-order correction reaches a value of about
26%. On the other hand, the second-order intensity yields a correction to the Planckian
intensity of up to about 30% if 7 is assumed to be the measurable temperature, but
only of about 27% if 7, is assumed to be the quantity measured by a thermometer.
More precisely, the observable differences between both assumptions with respect to
the Planckian spectra are of about 2.5%. The relative difference, i.e. (iflz) - ig))/ifi),
reaches a value of about 2%. Such a difference is not negligible and could therefore,
in principle, make it possible to determine which quantity, 7" or T,, is the measurable
temperature.

4. Concluding remarks

We have proposed an experiment, depicted in Fig. 1, that may be useful in order
to determine experimentally whether the generalized temperature of EIT, T, is the
measurable temperature outside local-equilibrium or not. The information-theoretical
predictions for the nonequilibrium deviations of the intensity with respect to the
Planckian spectrum depend on whether one assumes that the EIT temperature, T,
or the local-equilibrium temperature, 7,, is the quantity measured by a thermometer.
This leads to differences higher than 2% with respect to the equilibrium, or Planckian,
results.

Of course, still higher differences could have been obtained by assuming higher val-
ues of the temperature gradient. However, in this case the second-order corrections
would be considerably increased in comparison with the first-order ones (the first-
and second-order corrections are linear and quadratic in the temperature gradient, re-
spectively, see Eqs. (13)—(14) and Egs. (27)—28)), and third-order terms (which are
difficult to calculate explicitly) would become increasingly important.

In closing this paper, and with the intention to give a complete discussion of the
mathematical formalism, we outline that in writing Eqs. (19)—(23) from Egs. (3)(6),
third- and higher-order terms have been neglected. Thus, it is important to check that
the neglected terms do not substantially affect the difference between the estimations
obtained from both sets of expressions. We will illustrate how we have done this by
means of a specific example. For Tp = 2000K, |d7/dz| = 15K/m and x = 10m~! we
have, according to Eqs. (17) and (7), that T, =~ 2009K, and find from these values and
Egs. (10)~(14), (24)(28) and (A.14) that the difference between >’ and i?’ is only
of about 0.36%. This shows that the neglected third-order terms do not substantially
change the estimations performed, so that the conclusion that important differences
arise from the assumption that T, instead of 7,, is the measurable temperature, remains
unchanged.
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Appendix A. Derivation of Eqgs. (7) and (18)

In this appendix we will first present a derivation of Eq. (7) in the second-order
approximation. In contrast with the method used in Ref. [13], the one presented below
will be very useful for the purposes of the present paper, because a similar procedure
will allow us to show the validity of Eq. (18) in the same order of approximation.

It has been shown that an information-theoretical approach leads to the following
second-order expressions (see Egs. (B.3) and (B.1) in Ref. [13])

_ 4acT?

F £+ 0%, (A1)

4
P = (1 4+ 62) + 0G), (A2)

with F the radiative heat flux, € = (0,0,¢) and P, the radiation pressure tensor.
For the sake of simplicity [13], F has been assumed to be parallel to the z axis. In
Appendix B in Ref [13], third-order terms in the expansion for F were taken
into account. We shall now see that it is, in fact, possible to derive Eq. (7) without
doing so.

It is well known that in the case under consideration, the gray steady-state radiative
transfer equation leads to the relation (see Refs. [21,22], or Eq. (25) in Ref. [13])

P

¢ SE = kF (A3)
oz

As in Ref. [13], we consider a special, the simplest possible case, by assuming
situations such that: (i) both 7 and £ depend only on the z coordinate; (ii) VT =
(0,0,dT/dz) is uniform; and (iii) the absorption coefficient x is uniform. Substitution
of Egs. (A.1) and (A.2) into Eq. (A.3) yields

1 dT  2&82dT de K
—— = —=——z. A4
3sz+ T d2+£dz 38 (A4)

In order to find out an expression for &, we may follow two different approaches that
yield the same result. We can make use of the method of successive approximations
[13] and neglect terms of third and higher order (we can do so because we are working
in the second-order approximation). Or we may simply check, by direct substitution
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into Eq. (A.4), that
1
=—-— VT AS
e=—7V (AS)

satisfies Eq. (A.4). This is so because Eq. (A.5) implies that the second and third
terms in the left-hand side of Eq. (A.4) are negligible in the second-order theory: we

have £2dT/dz = —«Te*, which is of third order in &; and we also have, making use of
assumptions (ii) and (iii), that
de 3
g A6
g 7 ke, (A.6)

again a third-order result.

Eq. (A.5) completes the derivation of Eq. (7) in the present paper. As mentioned
above, this result had been obtained previously (Eq. (B.8) in Ref. [13]). However,
the derivation presented here shows that there is no need to make use of the method
of successive approximations, because some terms that seem relevant at first sight are
seen to be of higher order by use of Eq. (A.5) as an ansatz. This method will now
be shown to provide a simple derivation of Eq. (18) in the present paper.

Egs. (A.1) and (A.2) are second-order expressions for F and P,,, written in terms
of T and &. In terms of T,, instead of T, we have (see Eqgs. (35) and (36) in Ref.

[131)

4

F= 4“§T’ £+ 0(), (A7)
al} 8 2 3

Przz = T 1 + 58 + O(B ). (A.8)

Making use of these two equations into Eq. (A.3) we obtain, instead of Eq. (A.4),

1dT, 8e*dT, 4 de

_ el AT A9
T, dz 3T, dz T3%dz " (A-9)

where the last term in the left-hand side is negligible in the second-order approximation

(see Eq. (A.6)). Therefore,

1 8 ,\ dT,
= _ 14 2¢? . 1
¢ KT,( +38) dz (A10)

At this point we may follow several procedures. One of them is analogous to the
last step in the derivation of Eq. (A.5): it is simple to check that the ansatz

1
kT,
satisfies Eq. (A.10): the second term in the right-hand side of Eq. (A.10) is then easily
checked to be of third order in e. Eq. (A.11) is the result to be derived (i.e., Eq. (18)).

There is a different derivation that makes the previous ansatz unnecessary and seems
interesting. In order to present it, we shall first prove that, in the present level of

b —

VT, (A.11)
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approximation, we have d7/dz = dT,/dz. From Egs. (17) and (A.5) we find, within
the second-order theory,

S
6x2T
From this equation and the assumptions, already applied above, that d7/dz and x are

uniform, we obtain
dT, _dT 5 (dry’
dz ~ dz 6k2T? \dz ) °

The last term in Eq. (A.13) is of third order in ¢ (see Eq. (A.5)). Therefore, in the
second-order theory we have

T, =T+ (dT/dz)? . (A.12)

(A.13)

dT  dT,
—_— = . A.l4
dz dz ( )
Making use of Eqs. (17) and (A.14) into Eq. (A.5) we obtain
1 5,\ dT;
= — - —_ . A.l5
R (1 s ) dz (A.13)

Combining this equation with Eq. (A.10) we obtain that ¢2dT,/dz is negligible in the
second-order theory, i.e., that it is at least of third order. By taking this into account,
Eq. (A.15) immediately yields Eq. (18) or Eq. (A.11), as it should.
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