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Abstract

Wien’s displacement law for the wavelength of maximum intensity of a blackbody is extended to nonequilibrium systems.
A non-vanishing temperature gradient causes a correction in the displacement law that is predicted and estimated making
use of information theory. A simple application is presented. © 1997 Elsevier Science B.V.

PACS: 05.30.—d; 52.25.Rv; 44.40.4a; 87.50.Hj

1. Introduction

Wien’s displacement law refers to blackbodies in
equilibrium. It states that the maximum intensity emit-
ted by such blackbodies occurs at a wavelength that
is proportional to the inverse of the temperature. The
proportionality constant can be written in terms of
three fundamental constants (the speed of light in
vacuo c¢, the Planck constant # and the Boltzmann
constant k) and follows directly from Planck’s radi-
ation law. Planck’s law is independent of the nature
of the blackbody: it depends only on its temparature.
Of course, the same happens for Wien’s displacement
law. This conceptuaily appealing subject also has very
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interesting applications: Wien’s displacement law and
Planck’s spectral law are useful in systems where the
radiation intensity is high enough to be detectable but
the temperature is difficult or impossible to measure
by means of a contact thermometer. A classical ap-
plication is the determination of the surface temper-
atures of stars [1]. Another application is sonolumi-
nescence, a very active topic of research, in which it
has been proposed that comparison of the measured
spectra with equilibrium (or Planckian) ones can be
used in order to evaluate the temperature, and there-
fore make it possible to test different theoretical mod-
els [2]. Wien’s displacement law and Planck’s spectral
law also have very important applications in radiation
thermometry [3,4]. However, since Planck’s law ap-
plies only to equilibrium states, which imply a uniform
temperature distribution in the system, it immediately
raises the question of its generalization to nonequilib-
rium states. This is an interesting topic in itself, and
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also from the point of view of applications. In fact, it
is well known that both the outer layers of a star [5]
and the bubbles generated by ultrasonic waves [6]
are far from equilibrium. Departure from equilibrium
is also observed in many systems, such as calibration
sources and industrial furnaces, that are of importance
in connection to radiation thermometry [3].

A well-known generalization of Planck’s radiation
law to nonequilibrium states is the so-called near-
equilibrium diffusion theory. This theory applies to
states near thermodynamic equilibrium and was orig-
inally derived on phenomenological grounds [7,8].
Recently, it has also been derived from statistical me-
chanics, making use of information theory [9]. Such
an approach provides a method for the theoretical
description of arbitrarily far-from-equilibrium radia-
tive systems. In the first nonequilibrium approxima-
tion, this method yields the results of near-equilibrium
diffusion theory, the second approximation has also
been worked out explicitly and it yields a general-
ization of near-equilibrium diffusion to states further
away from equilibrium. Our purposes are here to de-
rive nonequilibrium extensions of Wien’s displace-
ment law from the first-order (or near-equilibrium dif-
fusion) and second-order theories, and also to analyze
under which conditions the near-equilibrium diffusion
displacement law may be trusted, making use of the
second-order information theory.

2. Information-theoretical extension of Wien’s
displacement law

We consider the simple radiative system depicted
in Fig. 1. It consists of an enclosure that contains a
gas and has highly absorbing internal walls and one
or several small apertures. We consider situations in
which the temperature depends on the vertical coor-
dinate z. Then the system is not in equilibrium and
the radiation intensity per unit solid angle is no longer
Planckian, not even isotropic (this is analogous to the
fact that the matter distribution function of an ideal gas
under a temperature gradient is neither Maxwellian
nor isotropic [ 10]). In order to prevent convective ef-
fects, we assume that the temperature decreases down-
wards in the system depicted in Fig. 1. In Ref. [9],
it has been proposed that such a system may be used
in order to test experimentally the predictions of ra-
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Fig. 1. Cavity with highly absorbing intemnal walls and containing
a gas. Radiation may leave the cavity through apertures A, B,
C, and C’. In the present Letter the displacement law is studied
for steady states such that there is a temperature gradient in the
direction shown in the figure

diative transfer theoretical models, and information-
theoretical nonequilibrium spectra for the radiation
leaving the cavity through the apertures in Fig. 1 were
calculated and displayed for some specific cases (for
the sake of simplicity, it was assumed that the mate-
rial inside the enclosure is a classical monatomic ideal
gas). In this way it was observed, for a very partic-
ular case, that Wien’s displacement law is predicted
to break down outside equilibrium (see Fig. 3b in
Ref. [9] and comments therein). In view of the appli-
cations that we have recalled here (see the first para-
graph in the previous section), it is convenient to try
to approach this problem in general, not only because
of its conceptual interest but also because of practical
motivations. In order to do so, we will first briefly re-
produce some necessary previous results, which were
derived under the assumptions that the system is in a
steady state and that the temperature gradient is uni-
form. Such assumptions make the problem easier to
handle mathematically. We mention that the underly-
ing statistical-mechanical approach can also be gener-
alized to non-steady states, leading to the inclusion of
radiative transfer in a wider thermodynamical frame-
work [11]. Here we are interested in the displace-
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ment law for the radiation intensity. For this purpose
it is important to note that, whereas in equilibrium the
same results for the displacement law are obtained in-
dependently of whether one considers the maximum
of the radiation intensity i, or of the energy density u,
(both of them are here defined per unit wavelength),
different displacement laws will be obtained for both
quantities outside equilibrium. This is due to the fact
that the well-known equilibrium relationship, namely
i = (¢/4)u,, is valid only for isotropic radiation.
Therefore, outside equilibrium we must study the radi-
ation intensity i, (which can be directly measured by
means of a spectrophotometer) and not the radiation
energy density u#, (which cannot be measured experi-
mentally ). The information-theoretically predicted in-
tensities, due to all photons that leave the enclosure
in Fig. 1 through the aperture A, B, C or C/, can be
found after integration of the radiation intensities per
unit solid angle over the appropriate ranges of solid
angle, and are respectively (see Egs. (62)-(66) and
(38) in Ref. [9])

ixa = Eaplanck (TA) [1 + a1 (Ta,ea) + P2 (Ta,£a) ]

+0(&d), (1)
iaB = iaplanck(TB) [1 — dr1 (T, €8B) + Pr2(TB,€8) ]
+0(sp), (2)
iac = iac = ixptanck(Te) [1 4 302 (Tc,80) ]
+0(&}), (3)
with
2arc2h 1
; = 4
iaplanck(T) FE; exp(hc/kT/\) 1 (4)
2 ch  exp(hc/kTA)
=S , 5
Pa(T28) = 3 3TR exp(he/kTA) —1° )
1 *n?
¢/\2(T, g) = Zm
y {exp(hc/kTA) +1] exp(hc/kTA)sz’ 6)

{exp(hc/kTA) — 1]2

where ¢, A, and k have already been defined in Sec-
tion 1, T is the temperature, A is the wavelength and
€ is a small parameter (its range of allowed values is
0 < &< 1[9]) that may be written, in the case and
order of approximation considered, as

1

oT

g
dz

, (7N

with o the absorption coefficient of the gas contained
in the enclosure. For the sake of simplicity, this coef-
ficient is assumed to be wavelength dependent (this is
called the gray approximation and is very convenient
in radiative transfer in order to get relatively simple
expressions [7,12]). Because the mean free path of
a photon is / = 1/o [7], Eq. (7) may be written as
& = (1/T)|dT/dz|. This is precisely the small parame-
ter used in the Enskog kinetic theory method for con-
ductive (instead of radiative) systems (the so-called
Knudsen number), and in this case there is wide ex-
perimental support for its validity as a nonequilibrium
expansion parameter [13]. For given values of [ and
T, the higher the temperature gradient is, the higher
the value of & will be, and this will make it necessary
to consider more terms in the expansions (1)-(3), so
that the radiation will show larger deviations from the
Planckian spectra, corresponding to the fact that the
system is further away from equilibrium.

In thermodynamic equilibrium, the temperature is
uniform and we have (see Eq. (7)) & = 0 at all points
of the system, so that all of the spectra (1)-(3) are
Planckian with the same temperature, as they should.

In the first-order approximation, second- and
higher-order terms in the small parameter £ are ne-
glected; thus, the intensities under consideration are
given, instead of Egs. (1)-(3), by

i$X = ixprnck(Ta) [1+ b1 (Ta,22) 1, (8)
i$5 = iaptanck(Ta) [1 — da1(Ta, e8) 1, (9)
lgg = lf\g = [xPlanck(Tc) (10)

with i) panck (T') and @41 (7, &) given by Eqs. (4) and
(5), respectively. As shown in Ref. [9], these first-
order results also follow from near-equilibrium diffu-
sion theory {7,8].

Since we are interested, in the first place, in find-
ing the wavelengths such that the near-equilibrium
diffusion intensity of the radiation leaving the cavity
through each aperture in Fig. 1 reaches its maximum,
we must set the derivatives of Eq. (8)-(10) with re-
spect to the wavelength equal to zero. This yields, re-
spectively,
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5+ (xa — 5) exp(xa) = 265 ASPLXA).
exp(xa) — 1
X [=2 = §xa + (2 — 5xa) exp(xa)], (11)
_ _ xp exp(xB)
54+ (xg—95) exp(xg) = ZSB—CXP()CB) 1
x [-2— txg + (2 — §xB) exp(xp)], (12)
54+ (x¢c — 5) exp(xc) =0, (13)

where we have introduced the dimensionless quantities

a=—h =k
A= kTA/\maxA, B= kTB/\maxB,
ch
xXc = ———, 14
¢ kTCAmaxC ( )

with Amax A, AmaxB @nd Amaxc the wavelength of max-
imum intensity for the radiation emitted by the enclo-
sure through the aperture A, B, and C (or C’), respec-
tively.

In thermodynamic equilibrium we have, as re-
called above, e = 0, eg = 0 and ec = 0, and in
this special case Eqs. (11)-(13) reduce, as they
should, to the well-known [14] equilibrium equa-
tion (1— Lx)e* =1, with x = xa = xp = xc (we
stress that this is valid in the absence of thermal
inhomogeneities). The solution to this equation can
be found making use of numerical methods and is
x =4.9651 [14,15].

We observe from Eq. (13) that, within the first-
order approximation, the wavelength of maximum in-
tensity for the apertures C and C’ is the same as in
equilibrium. This is due to the fact that the first-order
intensity (10) (which we stress has been integrated
over the appropriate range of solid angle) is Planck-
ian. In contrast, the first-order correction to the inten-
sity corresponding to apertures A and B does not van-
ish (see Eqgs. (8) and (9)). This causes a first-order
correction to the Wien displacement law for the radi-
ation leaving the enclosure through apertures A and
B: the right-hand sides of Eqs. (11) and (12) do not
vanish identically, in contrast to that of Eq. (13).

We have recalled that, even in equilibrium, numeri-
cal methods are necessary in order to find explicit ex-
pressions for the wavelength of maximum intensity.
Similarly, we have only succeeded in dealing with the
solutions to the first-order nonequilibrium equations
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Fig. 2. First-order predictions for the displacement law. The vertical
axis x stands for x5, xg and xc for the aperture A, B, and C
(or C') in Fig. 1 respectively. These quantities are related to the
wavelength of maximum intensity by Eq. (14). The horizontal
axis corresponds to g5 for xa, eg for xg and sc for xc. The
dashed-dotted lines are numerical solutions to Eqs. (11)-(13).
The dashed lines correspond to linear approximations given by
Egs. (17)-(19). For the aperture C (and C’), both lines are the
same.

(11)-(13) numerically. In Fig. 2 we present the nu-
merical solutions to these equations (dashed-dotted
lines). From this figure we observe the following. As
states further away from equilibrium are considered,
there is an increase in the value of x5 (which corre-
sponds to a decrease of Amaxa, see Eq. (14)) and a
decrease in the value of xg (which corresponds to an
increase of the value of Apaxp). Thus, we conclude
that in near-equilibrium states, the first-order (or near-
equilibrium diffusion) theory predicts a decrease of
the wavelength of maximum intensity for an observer
who measures the intensity looking along the direc-
tion of the temperature gradient (i.e., an observer lo-
cated at the aperture A in Fig. 1) and an increase
of the wavelength of maximum intensity for an ob-
server who looks in the direction opposite to that of
the temperature gradient (i.e., an observer located at
B). However, in such near-equilibrium states no de-
tectable modification of the wavelength of maximum
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intensity is predicted for an observer who measures
the radiation looking in a direction orthogonal to that
of temperature gradient (apertures C an C’ in Fig. 1).
As we shall see, much modification is predicted only
for states further away from equilibrium. On the other
hand, it would not be difficult to find predictions cor-
responding to other directions, but the ones considered
here are enough in order to illustrate the predicted ef-
fect.

Because Eqgs. (11) and (12) are rather complicated,
it is interesting to find approximate expressions. This
can be achieved in the following way. Consider, e.g.,
aperture A. We look for the first-order MacLaurin ex-
pansion corresponding to the function xa(ga), i.e. we
look for the linear approximation to the dash-dotted
line A in Fig. 2. We denote this approximation by
x;‘l)(eA). Thus

dxA
x(en) =xA|sA4)+d—8jA— &ns (15)
SA=0

with xale,0 = 4.9651. A simple way to find the
value of dxa /deae,=0 is the following. We first write

Eq. (11) as

[exp(xa) — 11{5 4 (xa — 5) exp(xa)]
= 2epxA €Xp(xa)
x[—2—1xa+(2- 1xa) exp(xa)].

It is easy to apply the usual method of implicit deriva-
tion [ 16] to this equation. In this way, we can find an
expression for dxs/dea and evaluate this derivative
at g5 = 0. This yields, after applying that 5 + (xa —
5) exp(xa) =0 for ea =0 (see Eq. (11)),

dﬂ = [2xaexp(xa)
dEA £A=0

x [—2 — 1xa + (2 — Lxa) exp(xa)]
x {[exp(xa) — 11[exp(xa) — 51} 7" |xy=a9651
=3.3101, (16)

so that we have, making use of Eq. (15),
x(D(ea) = 4.9651 +3.3101z4. (17)
For aperture B, the same procedure yields

x(V (ep) = 4.9651 — 3.3101es, (18)

whereas for apertures C and C’ we have
xD (ec) = x (ecr) = 4.9651. (19)

In order to avoid confusion, let us mention explic-
itly that we have g4 = ec-. This follows directly from
Eq. (7), the fact that apertures C and C’ have the
same value of the z-coordinate (see Fig. 1), and the
assumptions that the temperature depends only on the
z-coordinate and that the temperature gradient is uni-
form.

Fig. 2 also includes the approximate solutions
(17)-(19) (dashed lines). They are seen to be very
good approximations for values of the nonequilibrium
parameter ¢ smaller than 0.02: then the differences
with respect to the numerical solutions to Eqs. (11)
and (12) (dashed-dotted lines) are less than 0.1%. It
might at first sight seem that second-order MacLau-
rin expansions (instead of the first-order ones of
Eqgs. (17)-(19)) would yietd better approximations.
However, it should be noted that second-order terms
have already been neglected in Egs. (8)-(10), so it is
clear that such a procedure would be senseless from
a physical point of view. In order to find better ap-
proximations than Eqgs. (17)-(19), we have to make
use of the second-order intensities (1)~(3). By ne-
glecting terms of third and higher order, and requiring
the vanishing of the derivatives of these expressions
with respect to the wavelength we obtain, instead of

Egs. (11)-(13),

xa€xp(xa)
exp(xa) — 1
X [=2 — 1xa + (2= $xa) exp(xa)]

54+ (xa — 5) exp(xp) =2e4

12 x3 exp(xa)

T A Texp(xa) — 112

X [ =7 —xa —a4xp exp(xa) +(7—xa) exp(2xa) ],
(20)

xp exp(xgs)

exp(xp) — 1

x [—2 — 1xp 4+ (2 — Jx8) exp(xp)]

5+ (xg — 5) exp(xp) = —2ep

12 x% exp(xg)
"B [exp(xp) — 112
x [—7—xp —4xp exp(xg) + (7—xp) exp(2xp) ],
(21)
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2 xkexp(xc)

€ lexp(xc) — 112

X [=7—xc—4xcexp(xc) +(7—xc)exp(2xc) ],
(22)

5+ (xc —5) exp(xc) = 3¢

In Fig. 3 we plot the numerical solutions to these three
equations (full lines). We find that the relative differ-
ences between the numerical solutions to the first and
second-order implicit equations (dashed-dotted and
full lines, respectively) are less than 0.1% for values
of & smaller than 0.02. Therefore, the near-equilibrium
diffusion generalizations of the Wien displacement
equation (Eqgs. (11)-(13) and their approximate so-
lutions (17)-(19)) should be reasonably accurate in
a given point of the system, provided that the tem-
perature, temperature gradient and absorption coeffi-
cient are such that the value of g, given by Eq. (7), is
smaller than 0.02.

Simpler results than Egs. (20)-(22) can be found
by determining the corresponding second-order
MacLaurin series. For example, for the aperture A we
define the function

1 dzxA

dxA
dear EAT 57
€A=0 2 dsA

de A

&4
SA=0
(23)

An implicit derivation of Eq. (20) leads to Eq. (16),
as it should. By implicitly deriving twice, the second
derivative can be found. The analytical result is rather
lengthy, so that we will only reproduce the value we
are interested in, namely its numerical evaluation at
the origin,

2
xf\ Y(€) = XAleazo +

deA

2
dsA 3A=0

=7.1416. (24)

We therefore see that the first-order expansion (17) is
generalized by

22 (e4) =4.9651 + 3310184 + 3.570863.  (25)

Following the same procedure for apertures B and C
(or C") we find, respectively,

xP (ep) = 4.9651 — 3.3101ep + 3.5708¢f,  (26)
xP(ec) = xP (ecr) =4.9651 +6.1383e.  (27)

In Figs. 3a,b we have included the second-order series
(25) and (26) (dotted lines). For values of & up to

0.05, it is seen that these yield reliable approximations,
as compared with the first-order ones (17) and (18),
to the numerical solutions of Egs. (20) and (21) (full
lines). Similarly, in Fig. 3c we have included a plot of
the second-order approximate solution (27) (dotted
line), but in this case we have chosen a range of &c
up to 0.25, because for the aperture C it is seen that
this solution is rather close to the numerical solution
to Eq. (22) (full line) even for ec = 0.25: The rela-
tive difference is only about 0.4%, whereas the near-
equilibrium diffusion approximation (dashed-dotted
line) corresponds to a difference, again relative to the
second-order exact result (full-line), of about 6.8%.
Of course, the second-order series (25)~(27) can be
extrapolated to higher values of &, but third and higher-
order terms (which would be very difficult to evalu-
ate) would become increasingly important.

3. Simple application

In order to check the usefulness of the resuits
presented, we would like to consider the displace-
ment law for a specific case. Let us assume that a
small part of some physical system (which could
be an outer layer of a star [1] or of a sonolumi-
nescent bubble [2], or the material in an industrial
furnace [3], etc.) can be approximately represented
by Fig. 1 (see, e.g., Ref. [17]) and that we observe
the radiation of the system looking in the direction of
the temperature gradient (i.e., we consider the radia-
tion crossing the aperture A in Fig. 1). If the values
of the relevant parameters are, e.g., T4 = 2000 K|
o =0.1m™! (see Ref. [9]) and |dT/dz| = 10 K/m,
what are the wavelengths of maximum intensity pre-
dicted by the different approximations? The simplest
approach would be to apply the usual equilibrium
laws to this nonequilibrium system, i.e. to assume that
the intensity is approximately Planckian. Under this
zeroth-order approximation (see Eq. (1)), one would
simply make use of the Wien displacement law. As
explained under Eq. (14), this yields x5 = 4.9651 and
therefore, making use of Eq. (14), one would obtain
Amaxa = ch/kTaxa = 1.4489 um. In contrast, we may
take into account that the system under consideration
is a nonequilibrium system and begin with the calcu-
lation of the nonequilibrium small parameter: Eq. (7)
yields ea = 0.05. Then the numerical solution to the
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Fig. 3. First- and second-order results for the displacement law. The first-order (i.e., dashed-dotted, and dashed) curves are the same as
in Fig. 2. The full lines are numerical solutions to the second-order equations (20)-(22). The dotted lines correspond to the quadratic
approximations given by Egs. (25)-(27).
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first-order implicit equation (11) is x4 = 5.1108 and
we obtain Amaxa = ch/kTaxa = 1.4076 pm (the first-
order approximation (17) yields a reasonably close
result, namely Amaxa = 1.4021 um). The second-
order implicit equation (20) yields xa = 5.1371 and
therefore Amaxa = 1.4004 um (the corresponding ap-
proximation (25) yields Apaxa = 1.3997 pum). Thus,
the first-order (or near-equilibrium diffusion) theory
yields a wavelength of maximum intensity which is
2.9% less than the value predicted by the zeroth-order
(or equilibrium) theory, whereas the second-order
correction, also with respect to the equilibrium value,
is 3.3%. Such differences are not negligible and are
therefore susceptible to being measured experimen-
tally. The simplest way would probably be, in our
opinion, to make use of an enclosure such as that
depicted in Fig. 1 and containing a gas that has an
absorption coefficient as gray as possible near the
wavelength of maximum intensity of radiation at the
chosen temperature of work. Otherwise, the gray ap-
proximation may be too hard an assumption [12], and
extending the method presented here in order to drop
it seems to be very complicated mathematically [9].

In closing we would like to stress that there are
many physical systems for which contact thermome-
ters cannot be used. Therefore, let us further exemplify
our results in the following way: assume that we want
to make use of the displacement law in order to deter-
mine the temperature of a system with o = 0.1 m™!
and |dT/dz| = 10 K/m. If we make use of a spec-
trophotometer, find that the wavelength of maximum
intensity iS Amaxa = 1.4004 um and simply apply
the Wien displacement law, what is the error made
in the temperature thus determined? The temperature
thus determined is Ty = ch/4.9651kAmaxa = 2069 K.
This approximate result amounts to neglecting the
presence of a temperature gradient in the system.
However, we have just seen that, according to the
second-order theory, the temperature in this case
would be Tx = 2000 K. Thus, the error is 3.5%. Such
an error should not be neglected. This, together with
the fact that it is currently necessary to determine the
temperatures of radiative systems under temperature

gradients [1-4], indicates the relevance of extending
Wien’s displacement law to nonequilibrium systems.
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