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Abstract

The nonequilibrium extension of the Wien displacement is analyzed by taking into account the requirement of vanishing
photon number flux. According to the vanishing-flux model, the nonequilibrium corrections to the Wien displacement are
larger than previously thought [J. Fort, J.A. Gonzélez and J.E. Llebot, Phys. Lett. A 236 (1997) 193]. This implies that
such corrections could be very important in optical methods of temperature measurement. € 1999 Elsevier Science B.V.

PACS: 05.30.—d; 44.40.+a

1. Introduction

Optical methods of temperature measurement are
specially important for very fast processes (such as
shock waves [ 1]) and for systems that are very small
(such as sonoluminescent bubbles [2] and nanopar-
ticles [3]) or have temperatures too high to be mea-
sured by means of contact thermometers (this hap-
pens, e.g., in furnaces of steel industries [4] and stel-
lar atmospheres [5] ). The Wien displacement law is
a well-known method to infer the temperature of a
system from the radiation it emits. However, systems
such as those mentioned above are usually (if not
always) in nonequilibrium states. Thus any descrip-
tion based on the Wien displacement law may be very
crude, because this law follows from the equilibrium
expression for the radiation intensity (i.e., the Planck
function) [6]. One way to get around this difficulty is
to resort to the classical theory of photon diffusion in
near-equilibrium systems. This theory is based on the
phenomenological hypothesis of radiative local ther-
modynamic equilibrium, which is the assumption that

the emission coefficient of radiation by matter is ap-
proximately the product of the Planck function times
the absorption coefficient, and leads to the following
result for the intensity of radiation [7,8],

I~_2hc2 1 1 eX
AT ex—1 Xe*—l

scosf)), (1)

where 4 is the Planck constant, ¢ is the speed of light
in vacuo, A the wavelength, @ the angle between the
direction of propagation and that of the temperature
gradient, and
_ ke _ VT

Xt &= o7 (2)
are dimensionless quantities, with k the Boltzmann
constant, T the temperature and ¢ the absorption coef-
ficient (here assumed independent of wavelength for
simplicity). In Ref. [9], it has been rigorously shown
that the physical meaning of ¢ is that it is a measure
of how far away from equilibrium the system is (in
thermal equilibrium we have £ = 0). Recently, it has
been shown that the intensity (1) yields corrections to
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the Wien displacement that are important enough to be
measurable [10]. Eq. (1) has also been derived and
generalized without making use of any phenomeno-
logical assumption but applying information statisti-
cal theory to the case in which radiation interacts with
a classical nonrelativistic monatomic ideal gas [9].
This approach is based on the maximization of the
entropy density under the constraints of fixed energy
density, molecular number density and radiative heat
flux, which leads to a radiation distribution of the form

~ 1

.= s 3
f exp(Bp,c —y - prcc) — 1 ()

where B and 7y are Lagrange multipliers, p, is the pho-
ton momentum and c its velocity. However, it has been
noted [11] that this distribution, already proposed in
Ref. [ 12], can be transformed into an equilibrium dis-
tribution by performing a Lorentz boost. This is why
the authors of Ref. [11] argued that the distribution
(3) does not describe a nonequilibrium system but
an equilibrium system as seen by an observer mov-
ing relative to it (this relative motion transforms the
energy and frequency of photons' and gives rise to
an energy flux that is therefore purely advective). In
order to avoid this problem, they proposed to use an
additional constraint of no global motion of the sys-
tem [11]. This was explicitly done by Dominguez in
Ref. [13], who was able to deal with the situation of
a nonadvective, purely heat flow by requiring an ad-
ditional constraint of vanishing photon number flux,
namely 2

d3p,
JN=/“F“Cfr=07 (4)
R3

which is the radiative analogue to the constraint of van-
ishing matter number flux used in information theory
of nonadvective, purely conductive systems>. This
analogy, and the fact that Eq. (3) becomes Planckian
in a specific frame, are motivations to explore the con-
sequences of the constraint (4), see e.g. Ref, [13].
Another way to introduce this constraint is to note
that all measurable quantities should in principle be

!'See Eq. (8) in Ref. [11].

2 See the text under Eq. (13) and p. 7712, as well as Eqs. (8)
and (10) in Ref. [13].

A Ref. [12], text above Eq. (30).

taken into account in the entropy maximization, but
use of Jy would yield an entropy depending on Jy,
in sharp contrast to the thermodynamics of matter sys-
tems [ 14] unless one requires that Jy = 0, as done in
Eq. (4). Use of this additional constraint (4) yields*

1
fr—eXP(Bprc—Y-prchrﬁ-C) -1’

(5)

where B, ¥ and & are Lagrange multipliers (we have
chosen the negative sign in front of 9 in order to
make the notation here similar to that in Refs. [9]
and [10]). The distribution f,, given by Eq. (5), is
different from f, (see Eq. (3)), and will therefore
lead to a radiation intensity I, different from the clas-
sical intensity I, (Eq. (1)). Not only from a concep-
tual perspective but also because of the practical ap-
plications we have summarized at the beginning, it is
of importance to determine if such an intensity yields
corrections to the generalized Wien displacement, and
in case it does, whether they are smaller or higher than
those derived in Ref. [10] for the classical intensity
1). Thus, here we will study the vanishing photon flux
theory based on Eq. (4) and compare both models.

2. Vanishing photon-flux nonequilibrium systems

For a system composed of matter and radiation, the
entropy density can be written as [6)

3
05 = pSp + ps, = —k dhim F(fm)
R1
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R}

(6)

where the subindexes m and r stand for matter and
radiation; s, p and f are the corresponding specific
entropies, momenta and distribution functions, respec-
tively; and p is the matter density. The entropy density
(6) has been used in Refs. [9,10] for the specific case
such that F ( f,,) = fuIn f,, which corresponds to a
classical ideal gas. Because this is a very special case
of matter, whereas optical temperature measurement
is important in very different kinds of systems (see

4 Ref. [T.%]. Eq. (14).
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the applications we have summarized in the first para-
graph), here we leave F (fn) unspecified. We also
have the statistical definitions

pU = pity + plty
&Ppn " d?
=/_'££H(pm)fm+2/"%prcfrv (7)
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with u the energy per unit mass and F the radiative heat
(or energy) flux. The microscopic operator H (py)
corresponds to the energy of the matter part (for ex-
ample, in the special case of nonrelativistic monatomic
molecules we would have H(p,) = p2/2m), and A’
are any additional operators.

We make use of information statistical theory [15]
by maximizing the entropy density (6) under the con-
straints (7)-(9) and (4), and finally obtain Eq. (5),
which had been previously derived for a purely radia-
tion system [ 13]. In contrast, here we are considering
a system composed of matter in addition to radiation.
This will allow us to relate the Lagrange multipliers
to directly measurable quantities. By assuming that
near-equilibrium states correspond to small values of
the radiation multipliers v and 8, a first-order Taylor
expansion of the r.h.s. of (5) yields

1
" exp(Bprc) — 1
exp( Bp,c)
g <1 T exp(Bpre) — 1
exp(Bpc)
" (B —1° 5)’ a0

which we insert into the constraints (4) and (9). After
integration we find

_ 77'26 5= k4BS F
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fr

prce-y

Y
(11)

where £(z) is the Riemann Zeta function, a =
8mk*/15¢h? is the blackbody constant, and the in-

tegrals have been performed by making use of the
formulae 3.423,2 and 9.542, 1 in Ref. [16].

By finding out the differential of the specific en-
tropy along the usual procedure (see Appendix A in
Ref. [9]), and making use of the thermodynamical
definition of temperature T, namely 1/T = ds/du, one
finds

1
B= iz (12)

We assume for simplicity that the system is in a steady
state. Then the grey radiative transfer equation (RTE)
has the simple form (¢/c) - VI, = —o I, + j, which
relates the variation of intensity in any direction ¢/c
to the absorption and emission coefficients, o and j,
respectively. As in Eqs. (1) and (2), we have as-
sumed o to be independent of frequency for simplic-
ity (the grey approximation [8,171). In the special
case of equilibrium, /, is Planckian with uniform tem-
perature and VI, = 0, so that emission and absorp-
tion processes compensate each other. Here we are in-
terested in nonequilibrium states (V1, # 0). As it
has been shown previously [ 18,19], integration of the
RTE given above over all frequencies and solid angles
yields

oPxi  dP, Pz

e —_— —_— - F
(ax 2 + az> oF; (13)
with i = x, y, z, and the pressure tensor of radiation
is [8,17] Pji = 2 [oa(d*p,/B®) (pr/C)cjcifr. It may
be easily calculated by insertion of Egs. (10) and (12)
and integration. This yields P; = 1aT*8;, where 8;; =
1if i = j and §;; = 0 otherwise. Use of this result and
of F, given by Eq. (11) into Eq. (13), yields

1 1

1 — (405/7%)[£(3) 12 ockT?
The intensity of radiation is related to the photon dis-
tribution function through I, = (2hc?/A%) f, [20].
Thus, making use of Egs. (10), (11), (12), (14) and

(2), and of the fact that the energy of a photon is
prc=he/A,

y= VT. (14)
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Fig. 1. A matter system with a nonuniform temperature distribution. Here ¢ is the angle between the direction of propagation and that of
the temperature gradient, as illustrated in the figure for a particular photon emitted by the nonequilibrium system. This system generalizes
that considered previously (see Fig. I in Ref. [ 10}): the matter part of the system no longer needs to be assumed a classical monatomic,
nonrelativistic ideal gas. In Figs. 2 and 3 we illustrate the predictions for the system depicted here, making use of the theoretical model

derived in the text.

which differs, as expected, from the result correspond-
ing to the classical diffusion theory (Eq. ().

3. The Wien displacement in nonequilibrium
systems

We consider a matter system under a temperature
gradient (see Fig. 1), and study the radiation it emits.
The intensity due to the photons that leave the sys-
tem through a unit area centered at point B in Fig. 1
is ixg = f[)z" de foﬂ/z dfsin@cosé Iz, where I p is
given by Egs. (15) and (2) evaluated at point B, i.e.
T = Ty and VT = VT|z. The intensities ixa and ixc,
corresponding to points A and C in Fig. 1, can be con-
sidered analogously [9]. Then, use of Eq. (15) and
integration yields

2ahet 1
A ex —1

261 xi— 186(3)/mr X
X (1 TS T (305/7) [£(3) 12 Xl — 1)’
(

i i =

16)

where I= A,B,C; as = +1,ag=—1,ac =0; and
Xa = hc/kTaA, €4 = |VT|/0Ty, etc. Here we have
assumed that the temperature gradient is uniform.

In Fig. 2 we plot the spectra for the case o = 0.1
m~" [9], T4 = 2000 K, Tp = 2001 K, and a tem-
perature gradient of |[V7T| = 5 K/m, as predicted by
Eq. (16) (dotted curves). We also include the pre-
dictions from classical diffusion theory [7-9] (full

curves), which corresponds to Eq. (1) (these predic-
tions are given by, e.g., Egs. (8)-(10), (4) and (5) in
Ref. [10]). The classical and the vanishing-flux the-
ories yield the same predictions for an observer that
detects the radiation looking perpendicularly to the di-
rection of the temperature gradient (in fact, Eq. (16)
for [ = C is nothing but the equilibrium, or Planckian,
intensity). By contrast, predictions are different if the
direction of observation is that of the temperature gra-
dient (curves A in Fig. 2) or the opposite one (curves
B). Fig. 2 shows that the wavelength of maximum in-
tensity Amax is also different: the theory analyzed in
Ref. [10] predicts Amax 5 = 1.47 pm, which com-
pared to the equilibrium result (Amax eq = 1.45 um)
yields an effect of about 1.5%. However, for the same
system the model presented here predicts Amax B =
1.52 um, which yields quite a larger effect, of about
5%.

The wavelength of maximum intensity corresponds
to

dira _ 0 dixg 0 dixc
X axs dxc
Making use of Eq. (16) into (17) we find quite a
complicated equation. However, Egs. (10) and ( 16)
are valid up to first order around equilibrium so that we

may simply make use of the approach corresponding
to Eq. (15) in Ref. [10]. This yields

=0. (17)

xa(ea) =4.9651 + 8.485184, (18)
yp(eg) =4.9651 — 8.4851ep, (19)
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Fig. 2. Comparison between the spectra predicted by the model derived in the present paper (dotted curves) and by the classical theory
of photon diffusion (full curves), for the system in Fig. 1. In this figure, the spectra A are those predicted at point A in Fig. I, etc. The
dashed line is a Planckian spectrum (at this scale, one may not distinguish Planckian spectra at temperatures T4, 75 and T¢), and it is
the prediction of both theories for the special case of point C in Fig. 1. The important part of this figure is the inset, which allows us to
distinguish the maxima of the spectra (i.e., the generalized Wien displacement).

Xc(ec) =4.9651. (20)
In Fig. 3 we present the predictions for the generalized
Wien displacement as a function of the nonequilib-
rium parameter &, according to Eqgs. (18)-(20) (dot-
ted lines). The predictions of the classical theory [7-
9], which were analyzed in Ref. [10], are also in-
cluded for comparison (full lines). It is seen that, in
accordance with the example presented in Fig. 2, the
requirement of vanishing photon number flux (which
had not been previously taken into account) yields
more important corrections than the classical theory. In
thermal equilibrium (e = 0) all intensities are Planck-
ian (see Eq. (16)) and Fig. 3 agrees with the Wien
displacement law, namely y = 4.9651. The higher the
value of £ is, the larger the corrections are. In the case
of very high temperature gradients, the first-order ap-
proximation (10) will break down, and one may carry
out the expansion up to higher orders (the second-
order extension of the classical photon diffusion theory
has been explicitly worked out in Refs. [9,10,21]).
As an application, assume we observe a system
with 0 = 0.1 m™! and |V7T| = 10 K/m and find
that its wavelength of maximum intensity iS Ayax 4 =
1.4004 um. If we want to determine the temperature
of the system, we could make use of the equilibrium
Wien displacement, i.e. T4 = ch/4.9651kAmax 4 =

2069 K. A better alternative would be to make use
of the classical theory of photon diffusion, as ana-
lyzed in Ref. [10]. This yields T4 = 2000 K, so that
the error stemming from the equilibrium approxima-
tion would be, within classical photon diffusion the-
ory, 3.5% { 10]. However, the requirement of a vanish-
ing photon flux leads to a different description. Then,
Eqgs. (18) and (2) yield T, = 1898 K, so that the error
of the equilibrium approximation would be of 171 K
or 9%.

4. Conclusions

We have shown that the additional constraint of
vanishing photon number flux yields near-equilibrium
corrections to the Wien displacement that are much
more relevant than those predicted by classical photon
diffusion theory. We mention, on the other hand, that in
contrast to the claim in Ref. [ 11], the fact that Eq. (3)
becomes Planckian in a given frame does not seem
sufficient to conclude that this corresponds to equi-
librium radiation: an experimental approach would be
not only useful but also important in view of the high
differences here computed.

We have made use of the principle of maximum
entropy in order to close the set of radiative hydro-
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Fig. 3. Predictions for the generalized Wien displacement law, according to the model analyzed here (dotted lines) and to the usual theory
of photon diffusion (full lines). The dashed line is the prediction from both theories for the special case of point C in Fig. 1. Since in
this case the near-equilibrium spectrum is Planckian, this line corresponds to the equilibrium, or Wien, displacement law.

dynamic equations. Such equations follow from the
radiative transfer equation (RTE), which has in turn
been derived form first principles in a variety of
ways [22-26]. We have here applied the grey RTE
for the sake of simplicity, and because it is enough
in order to perform estimations, but it is possible to
generalize the results for the nonequilibrium intensity
without making use of the grey approximation [27].

Although we have considered a mathematically sim-
ple description for the system, it can be shown that the
result 8 = 1/kT is valid for an arbitrary interaction be-
tween the matter particles [28]. This is not surprising
since B links the thermal state of matter to its radiative
emission. In other words, we have dealt with thermal
emission and not with radiation-matter energy equi-
libration processes [29]. However, in contrast to the
case corresponding to the usual, Wien displacement,
we have allowed for the possibility of a temperature
gradient in the system.
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