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Abstract
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We review the progress in the field of front propagation in recent years. We survey many
physical, biophysical and cross-disciplinary applications, including reduced-variable models
of combustion flames, Reid’s paradox of rapid forest range expansions, the European
colonization of North America during the 19th century, the Neolithic transition in Europe from
13000 to 5000 years ago, the description of subsistence boundaries, the formation of cultural
boundaries, the spread of genetic mutations, theory and experiments on virus infections,
models of cancer tumors, etc. Recent theoretical advances are unified in a single framework,
encompassing very diverse systems such as those with biased random walks, distributed
delays, sequential reaction and dispersion, cohabitation models, age structure and systems
with several interacting species. Directions for future progress are outlined.
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1. Introduction

Fronts are observed in many systems with dynamics driven by
reaction and diffusion [1, 2] (or reproduction and dispersal,
in biophysical applications). They describe propagating
profiles for the particle concentration, individual number
density, temperature, etc. They are widely used in physical
models of combustion flames [3], population invasions [4],
virus infections [5], tumor growth [6], chemical waves
[71, crystallization [8], superconductors [9] and many other
interesting phenomena in physical, biophysical, chemical and
cross-disciplinary systems [1,2, 10].

In the last six years, many new analytical results on
front propagation have been published, dealing with sequential
reaction and dispersion [11], fronts from biased random
walks [12—15], age-structured systems [16], distributed delays
[17-22], dispersive variability [22, 23], interacting species
[24,25], anomalous diffusion fronts [26,27], dispersal kernel
effects [28], convective systems [29-31], etc. In this review
we present these theoretical advances in a single, unified
framework.

We survey many specific physical, biophysical and cross-
disciplinary applications of front propagation models. For
example, combustion flames are a very active area of research
[30-34]. They have been recently described using a single,
reduced variable, which makes it possible to derive analytical
lower and upper bounds on the propagation speed [32]. We
review these results for flame propagation, as well as their
extensions to encompass the effects of mass diffusion, heat
convection and temperature-dependent parameters of heat and
mass transport [33, 34].

We also discuss the recent explanation of Reid’s paradox
of rapid forest recolonizations using bimodal kernels with
long-distance dispersal in two-dimensional space [11,35].

Physical models are becoming widely applied to human
population invasions, including Paleolithic waves of advance
in America [36] and Europe [37], as well as to the European
colonization of North America in the 19th century [12] and
the Neolithic transition in Europe (from 13 000 to 5000 years
ago) [4, 16, 20, 25]. Such applications are surveyed here.
The description of subsistence boundaries, as well as a recent
model on the dynamics leading to the formation of cultural
boundaries [38], is also reviewed in this work.

We also review theoretical models and experimental data
on the speed of virus infections [5, 21, 39, 40], the spread of
genetic mutations [41-43], a recent physical model, which
describes the spread of cancer tumors by taking into account
the lower proliferation rate of migratory cells [44], etc.

Concerning numerical work, in addition to results based
on the discretization of differential equations (which are
appropriate to some systems, e.g. combustion flames) and fast-
Fourier transforms (which require less computing time for
integro-difference equations), we also review recent numerical
approaches based on reactive random walks on grids (which
are more reasonable for biophysical systems in which there is
a reproduction process) [11].

Sequential models are an important part of this review.
They are necessary in some applications, e.g. to solve Reid’s

paradox of fast forest recolonizations. The main difference
between non-sequential and sequential models is the following.
In non-sequential models (section 2), reaction and dispersal (of
particles or individuals) are simultaneous processes. Thisis the
most well-known approach, and is especially useful in purely
physical systems, e.g. in combustion flames (section 5). On
the other hand, in biophysical applications, the reproduction
of individuals replaces the reaction process, and for some
biological species (e.g. trees) this is not simultaneous with
dispersal. Then, sequential models are more appropriate
(section 7). Further refinements are necessary in some cases
(e.g. human populations), leading to cohabitation models
(section 8), which are mathematically similar to sequential
models but apply to different biological systems.

2. Non-sequential models

This section surveys non-sequential models of front
propagation, for particles (or individuals) performing biased
(or anisotropic) random walks. This leads to fronts with
speed depending on direction. An interesting application of
such anisotropic fronts is the recent explanation (via computer
simulations) of the non-homogeneous speed of Neolithic
fronts, based on anisotropic diffusion due to enhanced transport
along major rivers [15] (section 3.2). Recent theoretical results
on anisotropic fronts include a Hamilton—Jacobi derivation
of the front position [45], a propagation failure condition
for random walks biased in the opposite direction to that of
the front propagation [13], velocity—curvature relations [46],
nucleation of spiral waves [14], etc. In this section, we focus
our attention on the speed of propagating fronts arising from
anisotropic random walks [12].

2.1. Microscopic derivation from non-isotropic random walks

In many systems, particles (or individuals) move with
a direction-dependent probability, i.e. following a biased
(or anisotropic) random walk. Such a behavior is displayed
in many phenomena, e.g. particle diffusion in disordered
lattices [47], diffusion-limited aggregation [48], experimental
populations of micro-organisms [49], human populations
invading a geographical region [15], etc.

In order to avoid confusion, it is important to mention that
correlation between the directions of successive jumps will
not be included in this review, because there is no reason to
think that such a correlation is relevant in the applications we
will tackle. Therefore, we will deal with biased, uncorrelated
random walks. In other words, we will allow the probability
of jump to depend on the angle relative to a fixed direction.
In contrast, in correlated (or persistent) random walks the
probability of jump depends on the angle relative to the
direction of motion before performing the jump (see, e.g.
section 2.2 in [1]).

For the sake of definiteness and clarity, we will deal with
a two-dimensional (2D) space in this section. Extension to 3D
is straightforward, but the 2D case is relevant to many of the
applications that we shall discuss in this review.
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Let p(x, y, t) stand for the population (or particle) number
per unit area at position (x, y) and time t. We define the
dispersalkernel ¢ (A, Ay, x, y) as the probability per unit area
that an individual (or particle) who was at (x — A, y — Ay, 1)
jumps to (x, y, f+ T).3 Let T stand for the mean time interval
between two subsequent jumps (in biophysical applications,
usually T = 1 generation [4, 5]). Let R[p(x,y,t)] stand
for the number of new individuals (or particles) due to the
reproduction process (or chemical reactions), produced during
the time interval T per unit area centered at (x, y). From these
definitions, the evolution equation is usually written as

+00 +00
p(x,y,t+T)—p(x,y,t)=/ / Px—Ac,y—Ay1)
—0oQ —0oQ

X¢(Ax,Ay,xsy)dAdiy—P(x»yvt)+R[P(x’yJ)],
ey

where the first and second terms on the right-hand side
correspond to the particles (or individuals) arriving minus
those leaving an unit area centered at (x, y), and the last one
R[p(x, y, t)]is a source term due to chemical reactions (or to
the reproduction of individuals).

The so-called diffusion approximation is obtained if
second-order Taylor expansions in space and time are
performed. Then equation (1) becomes

ad T 92 d d 92 92
PP gy yp tPlyp P
or 2 01 0x ~ 9y dx? 7 9y?
8%p ToF
+Dy——+F+-—. 2)
0xdy 2 0t

Here F is the time derivative of p(x, y, t) due to reproduction,
i.e. [4]
R[p( 1] TF+T2 8F+T3 82F+
X, Y, = PR A Al Y
Py 20 9 3! o

D,, Dy and D, are direction-dependent diffusion coefficients,

3)

ey _ 18D )
(X, y) = Tk €]
S 5
y(xa y) - 2T ’ ( )

AN,
ny(-x’y)=¥v (6)

and we have defined

Usx, y) = 2 ™

X ’ T k)
Uyx, y) = 22 ®)

y ) T )

where the mean value of an arbitrary function of the jump
vector £ (Ay, Ay) is defined as

<§(AX,A);>>E/ / (B )P (D Byox, )AL dA,.

3 Note that in [1] we defined ¢ (A, Ay) as the probability of a jump from
(x+Ay, y+A,y, t), whereas in the present review we use negative signs instead.
This is clearer for non-isotropic (i.e. biased) random walks because otherwise
the kernel @ (@) in equation (30) would correspond to a jump with angle —6,
which would be rather confusing.

In general the dispersion kernel ¢(A,, Ay, x, y) can depend
on position (x, y) in addition to the jump vector components
(A, AY). Then, the macroscopic parameters above
(Dy, Dy, etc) also depend on position. However, in the
homogeneous case we can simply write ¢ (A, A,) instead
of p(Ax, Ay, x,¥).

2.2. Macroscopic derivation of non-sequential models

This section gives a simple macroscopic derivation of the same
model that has been derived microscopically in the previous
section.

Let us assume that there is a maximum possible value for
the particle (or individual) number density, pmax. In realistic
systems, initially all particles (or individuals) are confined into
a finite region of space (if this region is very small compared
with the dimension of the system, it may be approximated to
a point and is called the origin of dispersal). As time goes on,
particles (or individuals) will disperse into other regions and
react (or reproduce), until the saturation density pp,y is locally
reached (i.e. p(x, ¥,1) = pmax)- The function p(x, y, t) may
then be called a front solution, in the sense that it leaves behind
a region full of particles or individuals (p(x, ¥,1) = pPmax),
whereas there is an empty region (p(x, y,t) = 0) ahead. Let
us choose a local x-axis along the local propagation direction
of the front (for example, for a circular front this direction
would be a radial direction from the origin of dispersal).
For large enough values of time, we may clearly consider a
region centered about this x-axis which is sufficiently small
so that the y-dependence of p(x, y, ¢) can be neglected. Then
equation (2) becomes simply

TOoF
2 ot

a T 9? 0 0?
P __p:_UX_p+DX_p+F+
ot 2 012 ox dx2

(€))

It is easy to see that this equation can also be derived by
combining the following set of phenomenological equations:

d 0J
o toe =
* (10)
aJ ap
J+1— = xP — Ux——»
ot 0x

where J is the diffusion flux and t = T/2 is called the
relaxation time. The first equation of this set is just a mass
balance equation, whereas the second one is a first-order Taylor
expansion for a time-delayed flux,

Jx,t+7)=Uyp — D,—.

o (11)

From this equation, we can say that the macroscopic effect
arising from a direction-dependent microscopic motion of the
particles is to introduce an additional flux U, p to the usual
diffusion flux —D,(dp/dx). In contrast, the effect of a finite
jump time (7 # 0) is to introduce a delay in the whole flux J.
Equation (11) for the non-delayed limit 7 = 0 is well known
to arise from biased random walks [50].

This simple macroscopic derivation of equation (9) from
the set (10) is appealing because of its simplicity. However, it
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is not enough in general to apply the model to experimental
data. The reason is that the set (10) is written in terms of
the macroscopic parameters t, U, and D,. But in specific
applications, the identification of the relaxation time 7 as half
of the time interval between successive jumps (i.e. T = 7/2),
the macroscopic ‘speed’ as U, as equation (7), and the
x-diffusion coefficient D, asequation (4) are usually necessary
in order to estimate the numerical values of 7, U, and D,
(section 3). And these three key results can be derived only
from microscopic models (e.g. that in the previous section) but
not from macroscopic ones such as the set (10).

The same model considered in this section and the
previous one has been recently derived also for the case
in which natality and mortality rates may depend on age
(appendix A).

2.3. The speed of non-sequential fronts

A reproduction function that has been widely applied in
biophysics problems is the logistic function

_pkxy, t))

pmax

F=er<x,y,r>(1 (12)
where r is called the initial growth rate and p, the saturation
density.

There are several ways to introduce equation (12).
Usually, experimental data for many biological populations
[51, 52] are considered as a valid justification for its use.
Interestingly, Hall [52] has argued that the high-density limit
(corresponding to the last term) of equation (12) has been
repeatedly compared favorably with experimental data for
populations in the laboratory (especially of microorganisms)
but not for wild populations (however, this does not change the
front speed, which is our main aim in this section).

Another way to introduce equation (12) is by means of
age-structured derivations, e.g. that presented in appendix A
(this is more complicated mathematically, but it clearly shows
that equation (12) takes into account the net effect of births and
deaths of individuals).

As explained in section 2.1, up to second order the
finite-difference equation (1) becomes the partial differential
equation (2) and T (i.e. the rest time between two successive
jumps of particles or migrations of individuals) plays the role
of a diffusive delay time. As we shall now see, this second-
order approximation makes it possible to derive an analytical
result for the front speed.

In this review we will not discuss the problem of the
dependence of the front speed on direction [14,46,53]. Instead,
in order to deal with the applications we are interested in, it will
be simpler to focus our attention on the speed of fronts along
the x-direction. The front speed can be found most easily by
assuming that for + — oo the front curvature is negligible
at scales much larger than that of individual dispersal events
[54]. In other words, we consider a region centered about the
x-axis which is sufficiently small so that the y-dependence of
p(x, y,t)canbeneglected. Then equation (2) becomes simply
equation (9), i.e.

ap T d’p ap 3%p T OF

+——=-Ui—+D,—+F+—-—.
ar 2 a2 Tox T ox? 2 9t

13)

Let ¢ stand for the front speed. We look for constant-shape
solutions with the form

p = poexp[—A(x — c1)] (14)

as x —ct — oo, with ¢ > 0 and A > 0. In this way, from
equations (13) and (12) for p >~ 0 (or x — ct — 00) up to first
order, we obtain the characteristic equation

) Tc?
A DX_T —Alc—U, —

Solving this equation for A and requiring for it to be real, we
obtain the condition

2 I"LT I’LT
= 1+— ) —-2cU, [ 1—
flo)=c ( + 5 ) c < 5

rL Tc

>+a=0. (15)

)—4rL D,—U?>0.

(16)
It is easily seen that f(c) is convex from below, and that the
equation f(c) = 0 has one negative and one positive root
for ¢, say c_ and c,.. Therefore, the minimum possible value for
¢ > 0 corresponds to c,. Let us now assume, as usual, that this
minimum possible speed c. is that selected by the front (this
is usually called linear or marginal stability analysis [1,2]). In
this way we finally obtain

rLT VLT 2 FLT 2
U1 - +2. /aD, |1+ — U
( 2) \/“ ( 2) 2
= _~ .
(1+%57)
2

Below we consider some limiting cases.

a7

2.3.1. Non-biased, delayed fronts. The non-biased case
corresponds to an isotropic kernel, so (A,) = 0and U, = 0
fromequation (7). In this limit, we recover from equation (17) a
result that has been referred to as hyperbolic reaction—diffusion
(HRD) [1], namely

2\/VL D

lim ¢c = ———,
l+rn T/2

U,—0

(18)

where, according to equations (4) and (5) for isotropic kernels,
(A%)

4T *
For later use, we note that the corresponding (HRD) evolution

equation is equation (13) in the non-biased limit (U, — 0),

ap T d’p

D=D,=D, =

19

3%p TdF
—+——=D— + ——,
at 2 0t 9x2 2 ot

with F given by the logistic reproduction rate (12).

+F (20)

2.3.2. Biased, non-delayed fronts. For a biased random walk
with negligible delay time (T <« i), equations (17) and (13)

become
c=U,+2r, Dy, 21
0 0 92
P _uyp L, (22)
ot ax ox2

where F is again given by equation (12).
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2.3.3.  Non-biased, non-delayed fronts. In the latter two
equations, if we consider the additional limit of a non-biased
random walk (U, — 0), we come to Fisher’s speed

c— 2yrL D, (23)
and 5
ap a°p
— =D—+F, 24
ot 9x2 @49

which is Fisher’s well-known reaction—diffusion equation [55],
with F given by the logistic reproduction rate (12).

2.4. Connection between microscopic and macroscopic
dispersal parameters

In order to apply equation (17), we need to assume some
function for the kernel ¢ (A, A,) appearing in equations (4)
and (7). As explained in section 2.1, we consider uncorrelated
random walks by assuming that the length and direction of
jumps are independent, i.e.

P (Ax, Ay) =V (A)D(O), (25)

where A = A2+A2 and 0 = tan"'Ay/A,.

Correspondingly, we write the normalization condition of the
kernel, namely

+00 400
/ / d)(Axa Ay) dA, dAy =1,

as a normalization condition for the length jump probability
distribution,

(26)

[o.¢]
/ V(A)AdA =1, 27
0
and another one for the probability distribution of the jump
direction,

2w
/ P@BH)do = 1. (28)
0
Several functions ® (6) have been used in the literature on
biased random walks [49,56]. For the purposes of the present
review, it will be interesting to consider the simple form [12]

®(0) =a + bcosb, (29)

where b > 0 and @ = 1/27 from the normalization condition
(28). Therefore

1
®(@) = — * bcosh. 30)
2

The following two cases can be considered.

(i) The positive sign in equation (30) corresponds to the case
in which the random walk is biased toward the local front
propagation direction (recall that in the previous section,
we have computed macroscopic front speeds along this
x-direction (6 = 0)). Then, the jump probability along
the front direction (0 = 0) is ® = a+b. It decreases with
increasing values of |0, down to the minimum ® = a —b
(which is attained for 6 = ).

(ii) The negative sign in equation (30) corresponds to the case
in which the minimum jump probability is attained along
the local front propagation direction, namely ® (6 = 0) =
a — b. It increases for increasing values of |9], up to the
maximum possible value (6 = ) = a + b. Note that
the kernel (30) is a probability distribution, so it must be
positive for all values of 6. Thus, in case (ii) we have the
condition

ogbgi.
2

In both cases (i) and (ii), the dimensionless parameter

€19}

(32)

may be called the bias of the random walk. In case (ii), we see
from equation (31) that

0<p<L (33)

Note that we may have case (i) at one point of space
and case (ii) in another point because U,, as defined by
equation (7), is space dependent in general. This may be
interesting to describe systems with non-homogeneous rates of
front spread. For example, in biological invasions individuals
may have a preference to jump in the local front direction
at some areas (case (i), U, > 0), e.g. because they are
attracted by more favorable habitats. But if other regions
are difficult to colonize, the random walk of individuals may
be strongly biased against the local front invasion direction
(case (ii), Uy < 0) and the front speed will become slower. An
application of case (ii) (U, < 0) is presented in section 3.1.

The diffusion coefficient D, and the macroscopic bias
parameter U, appearing in the front speed, equation (17),
can finally be related to the microscopic bias parameter b, by
using equations (25) and (30) to perform the integrations in
equations (4) and (7). This yields

2 2 o]
R G if W(A)ATdD,  (34)
2T AT ~ 4T J,
U, = (An) _ inb@ = i”—b oolIJ(A)AZdA. (35)
2T T T Jo

3. Applications of non-sequential models

3.1. European invasion of North America during the
19th century

As an illustration, in this section we consider the human
population front colonizing North America in the period
1790-1910 [12]. The front speed can be easily determined,
either from detailed population maps [57] or from the center-
of-mass population trajectory [58]. Both approaches yield
essentially the same range for the observed speed, namely
(13.5 = 0.8) kmyr~! (95% confidence-level interval) [59].
On the other hand, mean migration data of individuals are
strongly biased in the direction opposite to that of the front
propagation [60]. Therefore, we are dealing with case (ii)
discussed at the end of the previous section.
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The parameter values for this application can be estimated
as follows. Lotka fitted a logistic growth function (12) to
the population of the United States and obtained for the
initial growth rate rp = 0.031yr~! [51]. It is worth noting
that this estimation agrees almost exactly with independent
estimations for human populations in other places and time
intervals [4]. Diffusion parameters are more difficult to
estimate. Sometimes a relatively small sample of migration
distances from genealogies are combined with persistence
data from other sources [59], but demographers have pointed
out that genealogy data are not representative of the whole
population [60]. Ferrie has analyzed migration distances for
the United States in the 19th century [60]. Using his data for
regions with more than 500 observations (i.e. a total of 3804
individuals) yields D, = 6075km? yr~! using equation (34).
Finally, we can estimate the macroscopic bias parameter U,
using equation (35) and values for (A)/T = 24.42kmyr~' 4
and b (or, equivalently, 8),

v, =-22

5T (36)

The value of S8 can be also estimated from Ferrie’s data cited
above, but we prefer to use the anisotropy parameter f as a free
parameter (horizontal axes in figure 1) because Ferrie’s data
contain only a few directions, so it does not seem possible to
obtain a precise value for 8.3

In figure 1 we present the speed predicted by equation (17)
as a function of the random walk bias 8 (see equation (33)).
The HRD speed (18), which corresponds to the non-biased
limit (8 = 0), is also shown. It is seen that the difference in the
biased model relative to the HRD speed can be substantial, as
large as 30%. We also include Fisher’s speed, equation (23).
In figure 1, the biased model is seen to be compatible with
the observed speed for high enough values of 8. We would
like to stress, however, that it is difficult to estimate the bias
parameter § precisely with the data available [12]. At this
stage the important conclusions are (i) a bias in the random
walk can have a very important effect on the front speed
(figure 1); (ii) the biased model leading to equation (17) is
free of some relatively strong assumptions (concerning e.g. the
fractal nature of pathways) that are used in alternative physical
models of population invasions [36,59].

Note that in the biased model, there is an advection term
and a diffusion term (first and second terms on the rhs of
equation (13), respectively). Their relative importance as a

4 For the migration data in [60] only the adult subpopulation is considered,
well-known 2D diffusion theory can be applied (without reproduction terms)
and we can estimate D, and U, from (A2)/(4T) = (r?)/(4) = Dy
(see equation (34)) and (A)/T = (r)/T = /aD/T (see also [55],
equation (9.10)).

3 One can try to estimate b from equation (30) with the minus sign and the
migration data in [60] into the ENC (East North Central) region (which has
more migration directions than the other regions). Those data are clearly
biased, with more migrations from the West than from the East. However, the
results are quite different if we estimate b using the horizontal directions, than
if diagonal directions are used (e.g. the latter approach gives b = 0.113, thus
B = 0.7). This shows the need for more detailed data, i.e. in many directions,
so that a fit can be made to equation (30) in order to try to estimate b accurately.
We are not aware of such detailed data, so it is more reasonable to analyze the
front speed as a function of 8 (figure 1) at this stage.

Ux (km/yr)
0.0 15 -3.1 4.6 -6.1 77 9.2 4107 -12.3
30 ——
28 Fisher —
26 | -
24 -
= i |
< 2 -
€
g i
o 20 -
° HRD
S 184 Sttt
73
16 biased model i
observed 1
12 -
10 —
0.0 0.1 0.3 0.4 0.5 0.6 0.8 0.9 1.0

dimensionless bias

Figure 1. Predicted speeds for the human invasion front of the
United States in the 19th century, as a function of the random walk
bias B in the migration of individuals. The observed speed range is
shown as a hatched rectangle.

function of distance can be estimated by means of the Peclet
number,

U.L
=D,
which for the human invasion application in this section
becomes of order 1 for distances L of the order of 500 km.
This is a distance scale similar to that in which the front speed
ismeasured [57,58], so this illustrative application supports our
proposal that both advection and diffusion can be important in
biophysical applications of front propagation models.

A more elaborate (cohabitation) model will be discussed
in section 8.3.

Pe , (37

3.2. Non-homogeneous dispersion kernels and non-isotropic
fronts

Davison et al [15] considered the two-dimensional equation (2)

with D, = D, = D and D,, = 0 in the non-delayed

limit (T — 0),
ap

= =—(U-V)p+V(DVp)+F,

5 (38)

where F is given by the logistic reproduction rate (12). In
their model, the advective speed U , diffusion coefficient D and
carrying capacity pmax are position dependent. The motivation
for this approach was the Neolithic transition in Europe, i.e. the
invasion of Europe by farming populations from the Near East
in the period 13 000 to 5000 years ago. Archaeological data
imply that the front of Neolithic humans (farming populations)
had an average speed of about 1kmyr~'. However, there
are significant regional variations, e.g. a retardation of the
spread to the Alps and to latitudes above 54°N, and increased
propagation speeds along the Danube and Rhine valleys and
along the Mediterranean coast [61,62]. In order to model
such regional variations, the term with the advective speed
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U was included in equation (38) and the parameter values
were assumed non-uniform. The term with advective speed
U accounts for the enhanced motivation of the population to
move in some particular directions (e.g. along river valleys).
As shown in section 2, this term arises naturally if the
dispersion kernel is non-isotropic (see, e.g. equations (2),
(7) and (8)). So this model takes into account the effects
of (i) non-isotropic dispersion and (ii) non-homogeneous
parameter values. Motivated by anthropological observations,
the authors of [15] assumed that the initial growth rate is
uniform. They used the value ri, = 0.02 yr~!'. The advection
speed U was assumed tangent to the Danube and Rhine rivers,
pointing to the direction of locally decreasing population
density, and restricted to a strip of 20km width around the
river_(assuming a Gaussian shape), with a maximum value
of |U | = Skmyr~! (this value is motivated by the spread
rate of the Linear Pottery (LBK) culture along the Danube—
Rhine corridor [61]). Similarly, sea travel was included by
assuming U tangent to the coast, with a maximum value
of |U| 10kmyr~! (motivated by the spread rate along
the Mediterranean coast [62]). Since early farming was not
possible at altitudes higher than 1000 m, both py.x and D
were assumed to decrease to zero smoothly from 900 to 1000 m
height. The effect of the harsh climate in the north was modeled
by assuming linear functions of ppax, |U | and D with latitude
(in such a way that these parameters were reduced by a factor
approximately 1/2 from Greece to Denmark). The background
diffusivity assumed in [15] was D = 12.5km?yr~! and, to
allow for sea travel (which is implied by the archaeological
data), D was assumed to reduce exponentially into the seas
with distance from the shore, over a length scale of 10km. By
numerically integrating equation (38) on a spherical surface
(with larger horizontal mesh sizes for lower latitudes), this
non-homogeneous model was shown to predict an accelerated
spread via the Rhine—Danube valleys (figure 4 in [15]), in
agreement with the archaeological data. Importantly, this key
result was not obtained if the term with the advective speed
U in equation (38) was neglected, even for non-homogeneous
parameter values (figure 3 in [15]). Therefore, the role of
advective speed in reaction—diffusion equations (due to non-
isotropic dispersal) seems to be of utmost importance in this
application. More recently, this model has also been applied to
a two-source description of the Neolithic transition (including
non-farming sites with ceramics in North-Eastern Europe)
with one source in the Near East and a second source in the
Urals [63].

3.3. Subsistence boundaries

Cohen [64] proposed a model for a single population, e.g.
Neolithic humans (i.e. farmers invading an area originally
populated by Paleolithics, i.e. hunter-gatherers). In this model
birth and death rates, b(0) and d (o), depend on land fertility o,
and thus on position. After making some assumptions on the
analytical forms of the functions (o) and d (o), Cohen’s final
expression for the contribution of the birth and death rates on
the rate of change of the population density has the form
on 1

= ——n(l —n),

E bd T(n) (39

where n = p/pmax, and the saturation density pp.x also
depends on the land fertility o, and thus on position. Cohen
also noted that, for such a position-dependent saturation
density pmax, the usual Fickian diffusion flux ]D = _DV p
would not vanish even at points where the population density
has already reached its maximum possible value (p = pmax)-
In order to avoid this, Cohen suggested to add a new flux
Jp to JD such that (i) Jp is proportional to the population
density p(x, y, t); and (ii) there is no total flux in points and
times where p reaches its saturation value pmax. This yields
Jr = Dp(V pmax)/ Pmax, SO the total flux is

-

+Jp = —DpmaxV(P/ Prnax)

&1

J= (40)
and its contribution to the rate of change of the population
density is

3 V-J V- (DpmuxV
on —_ _ (Dpma l’l) (41)
ot J Pmax Pmax

If in some region the land fertility is so low that farmers cannot
survive (e.g. a mountain), then pm,x = 0 and equation (40)
yields J = 0. Therefore, there is no flux across such a
‘subsistence boundary’ and no Neolithic population beyond
it. Cohen suggests that this offers a possible explanation for
the persistence of isolated languages in mountainous regions
of Europe (e.g. the Basque, the languages of the Caucasus and
those of the Urals), in the form of such subsistence boundaries
around some mountainous regions, across which no Neolithic
population advance would have occurred. In such cases, the
Paleolithics would have had time enough to adopt farming
(instead of being overwhelmed by a much more numerous
Neolithic population density, as it presumably happened in
most of Europe). An open problem is to find a microscopic,
non-heuristic derivation for the additional flux Jg. This
model is an interesting proposal, and its implications on
the description of subsistence boundaries deserve further
development.

Cohen’s final evolution equation is obtained by adding up
equations (39) and (41),

d 1 V - (DpmaxV
Ly PP
ot T(n) Pmax

This equation is an alternative to Fisher’s classical

equation (24) in non-homogeneous spaces (for the homoge-
neous case, Cohen’s equation becomes equivalent to Fisher’s
equation in practice, because the dependence t(n) is weak
[38]). Cohen’s equation (42) will be generalized to the
important case of several interacting populations in the
following section.

3.4. Cultural boundaries

Recently, Ackland ef al [38] have generalized Cohen’s model
to deal with several interacting populations. Their model
displays ‘cultural boundaries’ after which a population trait
(e.g. language, ceramics, etc) does not extend because the
advantageous trait (farming) is thereafter no longer carried
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along by the invading population (Neolithics) but by an
indigenous one that has adopted it (Paleolithic communities
who have become farmers, instead of hunter-gatherers as in
the past). There is a crucial difference between cultural
and subsistence boundaries. Whereas subsistence boundaries
(summarized in the previous section) can form only around
areas with too low land fertility to sustain agriculture (e.g.
mountainous regions), cultural boundaries can form even
in homogeneous land. Thus, here we will consider the
case of uniform parameter values, which is mathematically
simpler. For simplicity, Ackland et al [38] consider equations
of the form (42) with the same diffusion coefficient for all
populations. Following again Cohen’s model [64] (see the
previous subsection), they obtain that the generalization of
equation (42) to three interacting populations is, for the case
of uniform parameters,

anF 1
—— =—nr(l =np —npy —nrx)
at TF
321/1[:
+D p 2 +)\.I’lpl’lx(l’lp —l’lx),
r
al’l[.] 1
o = l__nH(l —npg —ngp —ngx)
A (43)
— + s
o2 ynu(np +ny)
81’!X 1
—— = —nx(1 —nx —nxr —nxn)
Jat Ty
82
+D—— P X+ ynp(np+ny) — inpny(np —ny),
where n; = pi/pmax; and njj = njpmaxj/pmaxi (with

i,j =F, H, X), pr is the population density of the invading
Neolithic farmers, py that of the invaded Paleolithic hunter-
gatherers and pyx that of acculturated hunter-gatherers (i.e.
individuals who were hunters but have adopted farming and
their descendants, so that they may retain the Paleolithic
language, cultural styles, etc).  The interaction terms
describe learning of farming by hunters H (who thus become
converts X) with strength y, and competition between F and
X farmers (e.g. for a cultural style or language) with strength A
(assumed proportional to the frequency of encounters and the
disparity in population size).

In general, the parameters t; depend on the total
population density according to Cohen’s model (previous
subsection), but this dependence was found to be weak in [38],
so it is not included here for simplicity.

In figure 2 we present typical numerical integrations of the
model (43). Itis seen that, even for uniform land fertility, a halo
of converts X forms (due to the learning process, i.e. the term
with y). This halo gradually grows until the convert population
(X) reaches saturation, and the Neolithic farmers (F') thereafter
become extinguished (due to the competition process, i.e. the
term with X, that changes sign after n y becomes larger thann g).
The role of the F-population is played by the X-population
after some point (r =~ 3 = 2000 yror r >~ 2400 km in figure 2).
There, a cultural boundary forms because farming is from that
point on propagated by converts X instead of Neolithics F
(right of figure 2). After the cultural boundary, traits other than
farming (e.g. a cultural style, language, etc) are Paleolithic and
no longer Neolithic (as they were before the cultural boundary
had been reached, i.e. to the left of figure 2).
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Figure 2. Invading front of Neolithic farmers (F') into a region
originally full of Paleolithic hunter-gatherers (H ), and formation
of a cultural boundary. Population densities (relative to their
maximum possible values) of invading Neolithic farmers (F),
indigenous Paleolithic hunter-gatherers (H) and Paleolithic
populations converted into farmers (X) for t; = 250 yr,

t, =500yr, ..., tjp = 2500 yr, from equations (43) with initial
conditions (np,ny,ny) = (1,0,0) atr =0 and (np,ny,ny) =
(0, 1, 0) elsewhere. The parameter values used are
Pmax F/ PmaxH = Pmaxx/Pmaxrr =30, Tp = Ty =t =
D =7km?yr™!,y =0.0005yr ' and A = 0.2yr™!, as
suggested in [38].

18.3 yr,

According to Ackland et al [38], the parameter y
approximately sets the timescale for the formation of the
cultural boundary as 1/y. This is confirmed for the parameter
values used in figure 2, where 1 /y = 2000 yr. The speed of the
F-population frontin figure 2 is ¢ ~ 1.2 km yr~! (no analytical
equation for it has yet been derived for the three-population
model (43)). The approximate location of the boundary can
thus be predicted as this speed times 1/y (r ~ ¢/y =~ 2400 km
in figure 2).

For A = 0, the model due to Aoki et al [65] is recovered
and the cultural boundary does not form. Instead, coexistence
of the F and X populations continues throughout, and the
genetic cline can be computed as ng/(ng +ny +ny) [65].

For non-uniform geographies (space-dependent parameter
values), the cultural boundary will of course form sooner or
later than for the case of uniform parameter values (figure 2),
but the final state is the same.

Ackland and co-workers suggest that their model may
explain important phenomena at a continental scale, such as the
boundary of the LinearBank Keramik (LBK) style in Europe,
the present-day distribution of Dravidian speakers in India, or
that of Bantu speakers in Africa.

Further progress on this line of research could include a
careful evaluation of the parameter values from independent
observations of interacting population dynamics, so that the
distance where the cultural boundary forms (relative to
the origin of dispersal) could be predicted and compared with
the observed values. Also, it would be very important to justify
(using independent observations) the form that the competition
term Anpny(np — ny), especially the assumption that it is
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proportional to the disparity of population sizes (np — ny).
Indeed, in this model the prediction of cultural boundaries
seems to require that the sign of this term changes as the
X population becomes large enough (leading to the extinction
of the F population).

3.5. The spread of genetic mutations

Some authors have considered a generalization of Fisher’s
equation (24) for several species or populationsi = 1,2, ...,n
given by the evolution equations [43]

op; _
Pl (of — )i+ DIV + Y [kjipy — kipil, (44)

at
JF#

where species i has number density p;, replication and
disappearance rates p; and p;, respectively (generally
dependent on the composition vector p = (pi, P2, .-, Pu))s
and diffusion coefficient D;, whereas k;; is the rate of
transformation of species i into j.

Vlad et al have analyzed the evolution of the fractions
of the different species or populations, y; = p;/p. For
example, in chemistry y; are molar fractions, whereas in
population genetics they are gene frequencies. After lengthy
mathematical transformations, equation (44) leads to the
following, very interesting evolution equations for the total
population density p = ) p; and for the fractions y; [43]

i—f = (Zmp?—Zyz-p,-‘)p+V2 (pZViDi)

+ Z[k.ﬁp.f — kijpil, (45)
J#i
Wi 3. 5 — 2 SR
§+V-(vi%) =R+ D;V*y, + vV -
+ Z[k‘iipj —kijpil, (46)
J#i
where )
v; = —2D;Vn p, (47)

Re = 1o} = 5071 = v { 8DV +2(V In p) - I1}

Vzp
+ (SD, Yi—, (48)
p
and
o =pit =Y _viny (49)
8D; = D; = ) D (50)

are deviations of the individual rate and transport coefficients
from the corresponding average values.

The important point here is that, when fractions vy;
instead of population densities p; are considered, an advective
term appears (the second term in equation (46)) with a speed
(47) opposite to the population gradient. Consider, as usual,
a population range with the population density decreasing
outward (near the range edge). Then, the gradient will have
the inward direction, and the advective speed v; will have the
outward direction. Therefore, according to equations (46) and

(47), the corresponding hydrodynamic speed v; will enhance
the transport of individuals outward the population range (i.e.
along the front propagation direction). On the other hand,
for a shrinking population, according to equations (46) and
(47) the speed v; would still have the outward direction, but
it would slow down the transport of individuals (because
the front speed then has the inward direction). Therefore,
Vlad et al argue that the physical origin of this advective
speed is the net population growth. The effect of v; will
be especially important on the front edge (because the speed
(47) is proportional to the gradient of the total population
density). Therefore, in addition to the front of the total invading
population, there is an additional advancing front (a mutant
cloud) of the subpopulation carrying the genetic mutation. If
the mutation has appeared in an individual born on the front
edge, transport will be most effective (then the two fronts are
synchronized). On the other hand, if the mutation has appeared
far behind the front, the mutant cloud speed will be too low
to follow the invading front (and the mutation will have poor
chances to spread). To apply this framework, Vlad er al [43]
considered a simplified version of equations (45)—(50) for a
single (n = 2) and neutral (p; = p; = p*, p; =p;, =p,
D, = D;) mutation, logistic reproduction (i.e. p* — p~ =
rL(1 — p/pmax), see equation (12)) and in one dimension,

ap p a%p

P _ 1— +D2 2, 51

5 . p ( Pmax> 2 (€28
% v o o L, (52)
W9 =02 ey,
ar ax Y axz Y

where y = p;/p is the fraction of mutants and ¢ = dv/dx.
It is also assumed that the neutral mutation occurs at some
position and time, and afterward no further mutations occur
(so that k3 = kp; = 0). Note that equation (51) is Fisher’s
equation (24). It has an approximate solution developed by
Luther, Fisher and others, namely [55, 66]

p max

px, 1) = ———F—=,
1 +exp \/EZ
D

where z = x — Cgisher? 1S the coordinate at which the front is at
rest, and Fisher’s speed cpisher 1S given by equation (23). Using
this model, Vlad et al have estimated the speed of the center
of gravity of the mutant cloud as [43]

(53)

CFisher
Cmutant = )

(54)

This speed is in agreement with the results of extensive
numerical simulations by Edmons et al, in which they obtained
a cloud of mutants arising from a mutation appearing in the
population and found that cygane = Crisher/2-2 [42].

The models reviewed in this section also provide a
quantitative approach to Fisher’s proposal on the evolution
of the RH gene system, according to which the ancestral,
African haplotype Dce underwent three major mutations which
later mixed into additional haplotypes (still now observed
in lesser frequencies than the other four). For example,
in the range expansion from central Asia toward west Asia
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and eventually Europe, the mutation D — d took place,
generating dce (the standard RH negative haplotype). Like
the other two, dce also reaches its maximum value near
the farthest point from the Asian center of the expansion
(at the Basque region for dce) [43]. Using this kind of
reaction—diffusion equations, simulations can produce gene-
frequency geographic distributions that can be compared
to those observed today. Moreover, genetic analyses of
prehistoric human remains have also become possible very
recently, so in the near future it will probably become possible
to compare to past gene-frequency maps (in addition to present
ones). An additional application of such models is to infer
the location and time of single mutational events from present
gene-frequency maps [43].

3.6. Dispersive variability

In the simplest population models with dispersive variability,
two subpopulations with different birth rates are considered:
dispersers and non-dispersers, with individual number
densities U(x, y,t) and V(x, y, t), respectively. Harris has
extended a classical model due to Cook in order to take into
account the effect due to the rest time 7 between subsequent
generations [23]. Then the HRD evolution equation (20) is
generalized into the set

o TOU _ U Fw. vy s LIFWY)
at T2 452 TP ’ 2 ot ’
(55)
IV
i (1—=poFU,V), (56)
where
U+Vv
F(U.V)=r(U+V) <1 _ ) (57)

is the logistic reproductive function (12), pq is the probability
that a newborn is a disperser, Dy is the diffusion coefficient of
the dispersive subpopulation and K is the carrying capacity.
Cook’s model is recovered in the limit 7 — 0, as is Fisher’s
model (24) in the additional limits pg — 1 and V — 0.

Following the same method as in section 2.3, the front
speed for equations (55) and (56) has been derived and applied
by Harris [23]. Other recent models with dispersive variability
can be found in [22]. Future work in this direction could
include a careful derivation of the evolution equations, e.g. (55)
and (56), from integro-difference equations similar to (1). For
example, a comparison could be made between a population
made of dispersers and non-dispersers (as in Cook’s and Harris’
models above) and a single population in which individuals
jump either a single distance or zero distance. Also, some
models in the literature consider subpopulations of adults
U and juveniles V, which play the role of dispersers and
non-dispersers, respectively [68]. Then, (1 — pq) F(U, V)
could be replaced by rL,U (1 — (U + V)/K)) in the evolution
equation (56) for the juveniles, and pyqF (U, V) could be
replaced, e.g. by —mV (with m the subadult mortality rate)
in the evolution equation (55) for the adults.
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4. The shape and width of fronts

The shape of a front is a relevant topic in several areas, e.g.
in the study of virus infection fronts (because their shapes or
profiles can be directly measured experimentally [67]), in fire
front research (because the width of the combustion zone is a
relevant prediction [69]), etc.

The simplest reaction—diffusion evolution equation is
Fisher’s equation (24). Then, as mentioned in the
previous section, the shape front is approximately given by
equation (53). This result is within a small percentage of that
obtained from numerical simulations of Fisher’s equation [55].
But Fisher’s equation is obviously a very special case, and front
shapes have been therefore analyzed for more general evolution
equations. The rest of this section reviews such results.

4.1. The effect of dispersive variability on the front shape

Harris has been able to solve the shape front problem for Cook’s
model [23]. As mentioned in the previous section, in Cook’s
model the effect of the waiting time is neglected (T — 0)
but two subpopulations are considered: dispersers and non-
dispersers, with number densities U (x, y, t) and V(x, y, t),
respectively, evolving according to

AU 92U
— = Dy—— FU, V), 58
Y Sy ( ) (58)
v
o = (1—-pg) F(U,V), (59)

where py < 1 is the probability that a newborn is a disperser
(Fisher’s equation (24) is recovered for pg = 1), and F (U, V)
is given by equation (57). Assuming as in section 2.3 that
U,V o exp[—A(x — ccook?)], the front speed is easily found
to be [55]

Ccook = v rLD(1 + /pa),
and Fisher’s speed (23) is recovered in the limit pg — 1, as it

should be. Harris has derived analytical formulae for the front
shape by considering two cases:

(60)

(i) Low values of pq. In this case, expansions of U (x, y, t)
and V (x, y, t) on the small parameter p; are performed,
U,y t) =Up(x,y, t)+ p(lj/zUl(x, V,t)+---

n 61)
V(x,y, 1) = Volx, y, 1) + pi > Vi(x, y, 1) + - --

and substitution into equations (58) and (59) yields [23]

Up(x,y,1) =0,
U](X, yvt) - O»

S (62)
Vo(x, y, 1) TTexple]’

K7 explz’]

N (I

where 77 = /r./D(x — ccooxt) is the dimensionless
coordinate at which the front is at rest, and the front speed
Ccook 18 given by equation (60).
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(ii) Large values of pq. In this case, expansions of U (x, y, t)
and V (x, y, t) on the small dimensionless parameter & =
L chfok are performed, leading to the following results
for the total population density p(x, y,t) = U(x, y,t) +
Vix,y,1)[23]

px,y,t) = polx,y, t) +epi(x,y,t) +---,

Po(X, y,f)= (63)

1 +exp[z’]’
4explz”]

(1 +exp[z"])?’

Kpaexplz”] In
(1 + exp[z"])?

where 7’ = 7/\/rLD/ccook-

By plotting equations (62) and (63) for several values of
P4, Harris has observed that the front shape is much steeper for
low values of pq [23]. As would be expected, then there are
fewer dispersers, so that the population toward the front edge
is decreased and the front becomes narrower and steeper.

Before closing the discussion of Cook’s model, it is worth
mentioning that equation (60) implies that populations with
very few dispersers (pg =~ 0) have front speeds about half
the value for populations in which all individuals disperse
(pa = 1) [55]. So interestingly, even very few dispersers
are able to sustain the propagation of the front without a huge
reduction in its speed.

pi(x, y, 1) =

4.2. The effect of delay times on the front width

Fronts arise in many models involving time-delays. Their
properties depend on the choice of the underlying, microscopic
random walk. In order to see this, Fedotov compared two
different models for the evolution of the population density
p(x,t) in one-dimensional (1D) space: model A, discrete in
time, and model B, continuous in time, as follows [70]:

model A:
o0
px,t+1) =/

o]

px+ A, )p(A)YdA +Trf(p), (64)

model B:
hp(x,1) =1 [/ px+ A, De(A)dz — p(x, t)} +rf(p).
(65)

The 1D dispersion kernel ¢ (A) is such that ¢(A) yields
the probability that a particle makes a jump of length A
(A may be positive or negative). In model A, the particle
moves at regular times intervals v, whereas in model B it
spends a random time between subsequent jumps with value
exponentially distributed with rate A [71]. Also, new particles
appear due to a nonlinear source term F(p) = rf(p), where
r is the characteristic rate of reproduction. Results for logistic
growth, f(p) = p(1 — p), are reviewed below. Note that
model B with A = 1/t can be obtained from model A for
sufficiently small values of the delay time t. Then, Fisher’s
equation (24) with D = (Az)/ (27) is recovered for isotropic
kernels by expanding the first term in the right-hand side of
equations (64) and (65) up to second order in A.
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Fedotov observed that models A and B yield different front
propagation speeds for the simple case of all particles jumping
the same distance [70]. The speed and width of fronts have
also been derived for two kernels widely used in the ecological
literature, namely a Laplacian kernel,

1
pL(A) = ge‘m‘/", (66)
and a Gaussian kernel,
1 Ny
vc(A) = —aﬁe . (67)

Using the method explained in section 2.3 up to second
order in «, explicit formulae for the front speeds have been
derived [28],

model A:
_al+d+28 01+ 6
T A+ +p) (68)
| 1+ B8+ +8)%In(1+p)
n[ 1+ BIn(1+p) }
model A:
_a [ 1+pma+p 1"
CG_E[(Hﬂ)ln(Hﬂ)} ()
In[(1+ v + g
model B:
cL aZA hl y\/y)h +2y2, (70)
Aty
model B:
cG:% %(ke”/’\—k+y). an
where
B=rif'(0) =1y. (72)

The validity of these results has been checked by
comparing them with the speed obtained from numerical
simulations using the fast-Fourier-transform method, which
makes it possible to derive precise results for integral equations
with a much shorter computer time [28]. The width of fronts
can be analyzed as follows. Figure 3 presents some simulated
fronts according to both models. It is seen that model B yields
a wider (and faster) front. From figure 3 we observe that there
exists an inflection point x* such that d, p reaches a maximum
value at x = x* and (32"p)y—y» = O forn = 1,2,3,....
Then one has from equation (64) for isotropic kernels [i.e.
9(A) = p(—A)],

P t+1) = p(X*, 1) + T f(p)]c=+ (73)
We also have, in the limit T < 7,
PX*, t+T) = p(x*, 1) + T |z, (74)
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Figure 3. Front profiles for » = 0.1 and the Laplacian kernel with
a? = 700. In model B A = 1/7, with T = 2. Note that model B
yields a faster front, which also has a wider reaction zone.
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Figure 4. Front width versus delay time. The rhombi are the results
from the numerical simulations, and the curves are the theoretical
predictions. In model B, A = 1/t so that model B is a first-order
approximation to the full dynamics described by model A. The front
speed is proportional to the front width L (see equation (76)).

so that

81p|x:x* = rf(p)|x:x*, (75)

and the same result holds for model B with A = 1/7. We
change into a frame moving with the front by defining the
coordinate 7 = x — ct. For x = x* we get —co,p|,—» =~
rf(p)|x=y+ . The width of the front L is given by
—1 r

L™ = —0;pl;=p = ;f(p)|z=z* (76)
In figure 4 we compare this prediction to the results
of numerical simulations for a logistic reactive process
(f(P)l:=+ = f(3) = 1). The front width is estimated
from the simulated profiles by fitting a straight line to the
central range (p =~ 1/2) of profiles such as those in figure 3

and, as mentioned above, the front width is estimated as the
inverse of the slope of the fitted line. From figure 4, we see
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that there is good agreement with the theoretical prediction
given by equation (76). Note that, from equation (76), the
front speed is proportional to the front width in both models.
A higher value of the delay time corresponds to a slower,
narrower front, as was to be expected. Figure 4 shows that
the higher the value of t, the more error results from using
model B as an approximation to model A, also as expected.
This error is higher than 20% in figure 4 and is the same for the
front speed and the front width, because they are proportional
to each other (see equation (76), which makes it possible to
determine the speed from any value of the front width in
figure 4). Therefore, when using model B as an approximation
to model A, one should previously see if the error, computed in
the way explained here and illustrated in figure 4, is negligible
or not for the parameter values used.

5. Combustion flames

Flame propagation models are based on non-sequential
reaction—diffusion equations similar to (24), where the source
function F has a strong dependence on temperature 7' [72].
A lot of work has been devoted to obtaining the propagation
speed of flames by means of combustion modeling through
a variety of approaches and numerical simulation strategies.
The problem is indeed daunting since an adequate account
of the combustion process must address transport properties,
the chemistry of the reacting mixture and their coupling
[73, 74]. Very recently, numerical simulations of highly
complex models have provided results which have been
successfully validated against measurements obtained from
experiments [75,76]. However, these types of studies require
a strong computational effort and do not yield equations for
the influence of the system parameters on the flame speed.
In contrast, the application of some levels of simplification to
the governing equations leads to simple models from which
estimates for the propagation speed of the flame are obtained
by employing a variety of techniques [77-79]. Here we
review some recent developments in this field [29-34], which
provide good estimates for the front propagation speed in some
combustion processes.

5.1. Background flow at rest, no mass diffusion and constant
transport coefficients

In premixed gas flames, the fuel, oxidant and inert gases are
mixed on the molecular scale before combustion is initiated
[80]. Here we restrict our attention to 1D models of laminar
premixed gas flames with a single-step reaction mechanism

R(reactants) — P (products), a7

where the reaction rate w (i.e. the normalized reactant
consumption rate due to the chemical reaction) at absolute
temperature 7 is given by an Arrhenius expression

w(T) = Ae™ & (78)

with activation energy per mole E,, universal gas constant R
and pre-exponential factor A (i.e. the inverse of a characteristic
reaction time) [81].
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Under these assumptions and neglecting mass diffusion, and
advection, radiative heat losses and conductive heat losses Omax = O + E (88)

through the boundaries, the model reduces to the following
balance equations of energy and fuel density pg [32]

00 920 .1 _1
§=ar,2+p(e i—e M), (79)
ap’ _1
P _Cpleh —e ), (80)
at’
where we have used the dimensionless variables and
parameters
0=T R (81)
=Tz
ROA
rr=r = 0 , (82)
DE;c,
RQA
=t 0 , (83)
cpE,
p="x (84)
P
E
= (85)
RO

where T is the absolute temperature, r is the radial coordinate,
t is the time, Q is the heat produced by the combustion reaction
per unit mass of fuel, ¢, is the specific heat of the mixture
at constant pressure, p is the density of the mixture (which
is constant, since here we neglect convection; see [33]) and
D= /(cpp) is the heat diffusivity, where A is the thermal
conductivity (assumed constant in this section).

Equation (80) corresponds to the consumption of fuel,
and prevents the temperature from increasing without bound.
The last term within the second parentheses in equations (79)
and (80) is the so-called ‘cold boundary layer’ heat loss term,
and it ensures steadiness (% =0and g—‘;,/ = 0) if all points of
the system are at room temperature (6 = 6) [32, 82].

This framework is essentially the model of a premixed gas
flame assumed by Zeldovich and Frank-Kamenentskii [72,83].

Note that the dimensionless front speed v = dr’/dt’ is
related to its speed ¢ = dr/dt as

Cc

86
HA (86)

vV=c¢

The boundary conditions are § — 6, (room temperature),
o — latr — oo, and 6 = 6,,x (maximum temperature),
o — 0atr = 0. The latter condition would break down if
heat losses were included (the solution would then be a pulse
rather than a front [32]). A recent mathematical procedure has
reduced the system of two partial differential equations (PDEs)
(79) and (80) into a single reaction—diffusion equation of a
single variable [32]. For this purpose, the main requirement
is that both thermal and mass gradients reach non-zero values
only in the narrow region where the front arises. This leads
to the following equations, that have been tested by numerical
integrations of the system (79) and (80) [32],

(I—p)

9290+ C

87)
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These equations lead to the final result that the model (79) and
(80) (which neglects mass diffusion, advection, radiative losses
and conductive losses through the boundaries) is reduced to a
single PDE, namely [32]

on 3%n
— = —— 4+ F s 89
o — a2 T 9
where a new dimensionless variable » is defined as
6 — 0y
n=———. 90)
emax - ‘90

This implies that the variable n varies from O to 1, which is
a requirement of some of the methods reviewed below. The
reaction term in equation (89) reads [32]

Fin) = C(1 = n)(e mlmr —e %), (91)

Equation (91) satisfies the condition F'(n) > 0 for 0 <
n<1lwith F(n =0) = 0Oand F(n = 1) = 0, which are also
necessary conditions for applying some of the methods here
reviewed.

Equation (89) is a non-sequential reaction—diffusion
equation but with a source function, equation (91), that differs
from the logistic function (12) applied in many biophysical
problems. The nonlinearities in equation (91) avoid an exact
result for the front speed, in contrast to the exact result (23)
valid for the logistic source function (12). This has led several
authors to derive bounds on the propagation speed of the flame
front. In this section we review the main expressions derived,
both for lower (v g) and for upper bounds (vyg) [32,29].

5.1.1. Zeldovich—Frank-Kamenentskii (ZFK) lower bound.
The method employed by Zeldovich and Frank-Kamenentskii
assumes a large thermal gradient in the reaction zone. Then,
the heat conduction term in equation (79) dominates over
the temporal derivative term, which corresponds to heat
convection in a frame moving with the flame (z r —ct)
and is positive in the absence of heat losses. Therefore, using
dimensional variables [72, 83],

( dr
A—
dz

The integration of equation (92) in the variable y
AdT /dz (so that 1/dz = y/AdT) from the boundary of the

reaction zone (T = Tp) to the burned zone (y >~ 0, T = Tiax)
leads to [72]

d
0< —

< ) + QApp(e ™ —e ). (92)
dz

dT Tinax B B
A— > 2Q,\Apr (e~® —e ®o)dT.  (93)
dZ To

In addition, it is assumed that the heat flux at the reaction
zone must equal the energy released by combustion

A— = Qpc.

dz G
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Combining equation (93) with (94) and using (87) leads
to a lower bound for the propagation speed v of the front flame

Tinax

2\

> [ ZAad—cO—6y)) | (e # —e Fh)dT.
Qp

(95)
Using dimensionless variables and equations (85) and
(88), this lower bound reads

Ty

ZFK __

V= Vip

(96)

1
2/ F(n)dn.
0

5.1.2. Kolmogorov—Petrovski—Piskunov (KPP) lower bound.
This method is based on the linearization of equation (89)
after introducing the variable z = r’ — vt’ with a solution
of the type n(z) = noe™** with ¢ > 0 for t — oo [84]. It
therefore corresponds to the linearization method reviewed in
section 2.3. This leads to a second-order equation for ¢,

)
n=0

and the condition that ¢ is real implies that the propagation

speed v must be greater than the lower bound vgp,

(55

However, as we shall review below, numerical integrations
of the set (79) and (80) have shown that for the function
(91) the bound (98) yields estimates that are several orders
of magnitude below the correct speed [32].

dF (n)

vl + < 97)

dF(n)
dn

v2v5§p=2

98)

5.1.3. Benguria—Cisternas—Depassier (BCD) lower bound.
Benguria et al [82] have developed a variational technique
which is very useful for providing estimates for the front speed
in a wide variety of 1D reaction—diffusion equations. For the
particular case of equation (89) with equation (91), the lower

bound vng for the dimensionless propagation speed v is

. i+1/2
o i (i roa)
2i+1 fol (fxl F(n) dn) dx

, 99)

and this bound holds for any value of i such that 1/2 <i < 1.
It is important to stress that equation (99) applies only for
those systems with dn/dr’ < 0. This requirement reduces the
application of equation (99) to fronts since in the propagation
of pulses, either the radiative or conductive cooling leads
to regions with dn/dr’ > 0. Another condition implicitly
assumed in deriving equation (99) is that F(n = 0) = 0,
Fn=1=0and F(n) >0for0 <n < 1.

5.1.4. Aronson—Weinberger (AW) upper bound. The upper
bound v{}‘g derived by Aronson and Weinberger [85] follows
from mathematical analysis applied to the phase space of
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equation (89). As explained in the KPP method above, in
the front reference frame (z = r’ — vt’) equation (89) becomes

nl +vn, + F(n) =0, (100)

where the symbol’ denotes derivative relative to z. Introducing
q = n, this equation is equivalent to the system

q' =p,
(101)
p'=—vp—F(q).

The functions p(z), g(z) corresponding to a solution of
equation (100) give a trajectory in the g—p plane (or, as it
is usually called, the phase space) such that

dp __ _Fl@
dg p

Plane wave solutions to equation (100) such that n — 0
as z — oo correspond to trajectories in the phase space
through the point (p,gq) = (0, 0). For such solutions with
bounded support for t = 0, the theorems due to Aronson and
Weinberger rigorously prove the existence of a minimum speed

vl given by [85,86]

where the supremum of the function F(n)/n is taken over
n e [0, 1].

It is very important that the unique requirement imposed
by Aronson and Weinberger in order to derive equation (102)
is Fn = 0) = 0and F(n = 1) = 0, with F(n) > 0 for
0 < n < 1. This is very encouraging since it implies that
equation (102) is suitable for being applied to a large variety
of cases. Indeed, recently it has been applied not only to fronts
but also to flame pulses, which are physically more realistic
(because flame extinguishment due to heat losses is included)
but mathematically much more complicated [32-34].

F(n)
n

vév{}g’:2

sup (102)

nel0,1]

5.1.5. Benguria—Depassier (BD) upper bound. Benguria
and Depassier [78] applied a variational technique to derive
the following upper bound for the dimensionless propagation

speed v,

which is valid for any function F(n) that satisfies
Fn=0=0,Fn=0)= 1with F(n) > 0for0 <n <1
and on/0r'|,—o = 0 and dn/9r’|,—; = 0 with dn/dr’ < O for
0<n<1[78]

dF(n)
dn

v < vop =2/ sup (103)

nel0,1]

5.1.6.  Benguria—Depassier—-Méndez (BDM) upper bound.
Finally, Benguria et al [29] have recently found an upper bound
by using the same variational technique as for the lower bound
vBCP . Their result is valid for any function F () that satisfies
Fn=0=0,Fn=1)=0and F(n) > 0for0 <n < 1.
It also requires that dn/dr" < 0. This bound reads [29]

up [¢ Fin) 1 } ’

nel0,1] n

BDM __
UuB

v < (104)

¢
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Figure 5. Comparison between the predicted bounds (curves) and
the speeds of combustion fronts obtained from numerical
integrations of equations (79) and (80) (circles), for several values of
the dimensionless room temperature 6y. Lower bounds plotted are
those from the BCD and ZFK methods. The KPP case gives values
well below the lower value shown in the y-axis. Upper bounds are
those from the BD and AW methods. The combustion
dimensionless parameter is C = ¢, E,/(RQ) = 0.5.

with ¢ any positive constant. By choosing ¢

1/sup, 0.1y v/ F(n)/n, equation (104) corresponds to the
classical Aronson and Weinberger bound (102).

5.1.7. Propagation speeds. Figure 5 shows a comparison of
the five bounds described above, as well as the propagation
speeds obtained by means of numerical integrations (circles)
of the full model that consists of the system of two PDEs (79)
and (80), for several values of the room temperature 6, [32].
In comparison with the full model, the best upper bound
is that due to Aronson and Weinberger (102). Concerning
lower bounds, equation (99) with i 1 provides the best
estimate to the simulations. Both upper and lower bounds
give a realistic variation of the speed, and they jointly lead
to correct predictions for its order of magnitude. Although
a direct comparison with experiment requires much more
complicated, purely numerical approaches (i.e. a large set of
differential equations involving a lot of chemical reactions and
additional transport phenomena [73-76]), relatively simple
models yield analytical bounds (such as figure 5) that are
a useful guide to the kind of dependences that should be
expected, as well as a practical check of more complicated
numerical codes.

5.2. Background flow, mass diffusion and transport
coefficients dependent on temperature

The previous section has analyzed a premixed gas flame
with a single-step reaction in a fluid at rest, without mass
diffusion and with constant transport coefficients. Here
we extend the model to include (1) advection, (2) mass
diffusion and (3) the dependence of transport coefficients on
temperature [33].
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Advection arises through the presence of a background
flow or by the effect of buoyancy (in both cases, the influence
of advection on the front speed may not be negligible [87]).
Mass diffusion, if the species have different specific heats,
leads to heat exchanges that may also influence the propagation
speed of the front [33]. Finally, temperature greatly varies in
combustion processes, which implies a variation of both mass
and heat transport coefficients important enough to modify the
propagation speed c.

These three effects (advection, mass diffusion and
transport coefficients as a function of temperature) are
now included in the evolution equations for dimensionless
temperature 6 (81) and fuel density p’ (84) [33,34, 88],

30 ( C )“2 - <)\ ae)
— + | =— UO—=—|——
ot’ DoA or’ or’ \ Ao or’
D Ac, 9p’ 90 1 _1
$Leg——P T "7 4 e i —e W), 105
e Dy c, or'or pe ¢ ") (105)
90’ c \'"? 90 8 D 3p'
o) v =L (Lo 222
at’ DoA ar’ or’ Dg or’
—Cpl(e i —e), (106)

where the dimensionless time ¢’ is defined by equation (83),
the parameter C by equation (85) and the dimensionless radial
coordinate 7’ now follows

! =r RQA
DoEuc,’

where Dy is the heat diffusivity at room temperature and
the other variables are defined below equation (82). In
equations (105) and (106) U is the velocity field of the
background flow, c,, is the specific heat at constant pressure of
the mixture (pc, = ¢p FPF + Cp NEONE)> AC, = CpF — Cp NF»
where the subindex F stands up for fuel, and NF for non-fuel
(inert gases, oxidizers and products), and

r

(107)

Dy

Leg = — (108)
0

is the Lewis number at room temperature, where Dy is the
mass diffusivity at room temperature. The Lewis number
is a key parameter in flame dynamics, a fact noted both
experimentally and numerically [89], with a wide variety of
studies on flame dynamics carried out for different values
of Le (see, e.g. [87,90]). Thermal conductivity A and mass
diffusivity D now follow
)ﬁ

T a
A=2 ,
()

0
where T is the absolute temperature, T is the room temperature
and Ag = AT = Tp). Zeldovich et al [72] use equation (109)
in the analysis of combustion processes with ¢ >~ g >~ 0.6.
Equations (105) and (106) implicitly assume a constant
value for the total density p, which holds either for the
particular case of a background flow at rest (i.e. U = 0) [33]

T

D =D
O<To

(109)
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._g E el TN nonlinearity (91). Equation (110) arises by assuming a linear
""""""""" dependence of temperature on fuel density, see equation (87),
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Figure 6. Upper bound (solid line) and lower bound (dotted line)
for the dimensionless propagation speed of the flame front obtained
from equation (117) and equation (118), respectively, as a function
of the Lewis number at room temperature, without background flow
(U = 0) and with temperature-independent transport coefficients

(e =0, B = 0). Circles are the front speeds from numerical
integrations of equations (105) and (106). In equation (118), the
function g(n) = +/1 — n has been used. The parameter values are
C =0.5and Ac,/c, =0.5.

or for the case of uniform advection (i.e. U constant).
Note, however, that in the following section we also analyze
the case of convection produced from density changes across
the flame front. Then, and following Vladimirova et al [31],
we assume as a first approximation that density changes
modify the flow velocity but not appreciably the diffusion
terms in equations (105) and (106). These diffusion terms,
indeed, lead to a small correction (circles in figure 6),
so the role of convection on these small, diffusion terms
is a second-order effect on the flame speed and can be
neglected [31].

The nonlinear term dp'/dr'36/dr’ in equation (105)
corresponds to the diffusion of fuel into the burned region
(i.e. that where fuel has been consumed by the combustion
reaction). Since fuel and non-fuel have different specific
heats (i.e. ¢, F # cpnr), this term does not vanish. Here
we assume that ¢, g > ¢, np, Which is obviously expected to
reduce the flame temperature and slow down the flame speed
in comparison with the ¢, r = ¢, nr case (a speed decrease is
indeed observed in figure 6).

The set (105) and (106) is in fact a generalization of
equations (79) and (80) to include advection (U # 0), mass
diffusion (Leg # 0) and transport coefficients dependent on
temperature (o # 0, 8 # 0). Recent work has reduced the
coupled set (105) and (106) to a single equation with a single
variable, namely [33,34]

on c \'* on 82n
—=-U(—) —+Am)—
ot’ DoA or’ or’?
on 2
+B(n) o +F(n), (110)
r
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t' [34]. Thus, equation (110) is indeed an approximation
of the full combustion model of a laminar premixed gas
flame that consists of two coupled PDEs (105) and (106).
It can in principle break down for flames with a reaction
zone which is sufficiently wide, i.e. for sufficiently smooth
profiles of temperature and fuel density. However, the validity
of equation (110) for realistic parameter values has been
tested by means of numerical integrations of the full model
(110)—(112) [32-34].

Note that equation (89) corresponds to a limiting case
of equation (110) for Ley = 0 (no mass diffusion), U = 0
(no advection) and @ = 0 (constant thermal conductivity).

5.2.1. The effect of convection. Neglecting mass diffusion
(i.e. Leg = 0), for non-Arrhenius reaction rates and for
constant values of transport coefficients, Vladimirova et al [31]
have recently investigated the effects of using two relevant
velocity fields on the propagation speed of the combustion
flame: (1) the simple case of a uniform value for the background
field U and (2) the case of taking the effect of the thermal
expansion through the flame thickness into account. The first
case implicitly assumes an incompressible (constant-density)
fluid. Then the dimensionless front speed v simply becomes
the sum of the dimensionless flow velocity (C/(DyA))"/2U
and the front propagation speed obtained for the particular
case of no convection (U = 0).

The second case analyzed by Vladimirova et al considers a
compressible (variable-density) fluid. In other words, density
changes due to thermal differences across the flame front are
taken into account. The mass balance equation in the front
reference frame, namely p(U — ¢) = po(Up — ¢), leads to the
following velocity field U [31]:

c \'? Pe \'"*U

(5r) v=(59) @

DyA Da Uy
Pe Po c o

172
(5ee) [5oa(-3)] ow
Da e U P

where pg and Uj are the total density and the flow velocity at
the unburned region, respectively, and are used to introduce the
Péclet number Pe = UyL/ 50, with L a characteristic length
scale, and the Damkohler number Da = LA/ Uy. The Péclet

number can be expressed in terms of the Reynolds number
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Re = UyL /vy, by using the Prandtl number Pr = vo/ﬁo,
where v is the kinematic viscosity at a reference point. In
equation (113), note that c is the propagation speed of the flame
which, indeed, is the value we seek to estimate, so in this case
the simulation of the full model (105) and (106) requires an
iterative process [34].

By assuming a constant-pressure process, densities in
equation (113) are easily related to temperatures and [34]

1+ —

1/2 1/2
(5a) v= () [ran(-a)] o
Da Cbp

D()A Uo
where n is again defined by equation (90), v is the
dimensionless propagation speed (v = ¢+/C/v/ DyA) and we
have introduced the dimensionless reference flow as uy =
VCUy/v/ DoA.

Vladimirova et al [31] obtained the flame speed by
the linearization method employed in the KPP lower bound
procedure detailed above. Recent work [34] has analyzed the
same background fields for an Arrhenius reaction rate (so that
the KPP method breaks down, as explained above) and by
including the effect of both mass diffusion (i.e. Le # 0) and
transport coefficients as a function of temperature.

n

5.2.2. Upper and lower bounds. The variational method
developed by Benguria et al [78] has been recently applied to
equation (110) in order to obtain bounds on the propagation
speed of flames [34]. For B below a critical value S given by

Ac, 1" 1\ 1
Leg 1+ — =|1+— l+(x+1)—

Cp Ceo Ceo CQO

c \'~2
DyA
where
F
o= sup |2 (116)
nel0,1] n

the speed satisfies v < vyg, where the upper bound vyp is [34]

F(n) n \*! (¢ + Dn
vy = Sup +o |1+ 1+ ——
neo,1] | ne Coy Coy
Ac, n \*
—pLeg=L (14 ) n
Cp CQ()

Pe 12 n

+| —C I+ —)¢.
(5ec) (1)

Equation (117) only holds if F(0) = 0, F(1) = 0,
F(n) > 0for0 < n < 1anddn/dr" < 0. It is important
to notice that the last condition applies for fronts but not for
pulses. This implies that the variational method as developed
by Benguria ef al [29,78, 82] is not able to provide limits for
the propagation speed when equation (110) is generalized to
include energy losses (that case is considered in [32,33]). Note
that equation (117) for Leg = 0, Uy = 0 and o = O reverts to
the Aronson and Weinberger upper bound (102), which can be
applied both to front and to pulse solutions [32-34].

However, the variational method developed by Benguria
et al [29,78, 82] may also be used for finding the lower

(117)
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Figure 7. Comparison between lower and upper bounds for the
propagation speed of the flame and the values obtained by numerical
simulations of the full model (105) and (106), as a function of « for
different values of the Reynolds number Re in a combustion model
with no mass diffusion (Ley = 0).

bound of the propagation speed of the flame front predicted
by equation (110). By doing so, Pujol er al [34] derive

v > vg, with
1 o
[2/0 dn <F(n)g(n) [—g'(n)< )
B\ V2 1
( " ) :|) / Ugn)dn
0

1+—

Co
where g(n) is an arbitrary positive function with g'(n) =
dg(n)/dn, which satisfies the requirement —g’(n) (1 + CLOO)“ —

<
DoA

n
VU B=——""—"" 1+—
folg(n)dn

CHy

Ac,
—Leg——g(n)
Cp

(118)

Leo%g(n)(l + cLoo)ﬂ > 0. We evaluate vy by using the
following trial function g(n)

g=+v1—n, (119)
which satisfies the requirement stated above when o > B for
LeygAc,/c, =0.5.

5.2.3. Propagation speeds. Figure 6 shows the dependence
of the propagation speed of combustion flames on the Lewis
number Le for a case without background flow (U = 0) and
constant values for the transport coefficients (¢« = 0, § = 0).
There is agreement between the simulations of the coupled
PDEs (105) and (106) (circles) and the lower and upper bounds
(118) and (117).

Figure 7 analyzes the dependence of the propagation speed
of combustion flames on «, so we neglect the effect of mass
diffusion in figure 7 (i.e. Leg = 0, so the value of 8 is
irrelevant). Figure 7 compares the dimensionless speed v
obtained from the full model (105) and (106) (circles) with the
estimates provided by equations (117) (solid lines) and (118)
(dashed line). In figure 7, « ranges from o 0 (constant



Rep. Prog. Phys. 71 (2008) 086001

J Fort and T Pujol

1.0

0.8 1

0.6 1

0.4 1

0.2 4

Figure 8. Contours of the propagation speed of the flame obtained
by numerical simulations of the full model (solid lines) and from the
upper bound equation (117) (dashed lines) as a function of « and 8.
Re = 0 (background flow at rest) and Ley = 1. The hatched region
corresponds to 8 > f., so the method used to derive the upper
bound breaks down.

thermal conductivity) to « = 1 (A oc T ) for two cases: (i) a
background flow at rest (U 0) and (ii) a background
flow with Re = 1000. The values of the parameters are
C = 25, 6y = 0.072, which lead to a room temperature
Ty = 300K and a flame temperature Ty,.x = 1966 K, Prandtl
number Pr = 0.7, Ac,/c, = 0.5, Da = 3.3 x 10® and
A = 3.3 x 107s7!' [34]. As expected, the dimensionless
propagation speed increases as « increases (heat conduction
increases). The agreement between the simulations of the
coupled PDEs (105) and (106) (circles) and the lower (118)
and upper bounds (117) is better at low values of «.

The effect of mass diffusion on the flame propagation
speed for # 0 and 8 # 0is shown in figure 8, where Ley = 1
and Re = 0 (background flow at rest), and the other parameter
values as above. The solid lines in figure 8 show the values of
the dimensionless propagation speed as a function of o and j,
whereas the dashed lines correspond to the upper bound values
derived from equation (117). The lower bound is not shown
for clarity (and because it holds only for ¢ > B). Results for
the very same case but with advection (Re = 1000) are shown
in figure 9. The upper bounds make it possible to predict the
correct order of magnitude of the flame front speed, as well as
its variation with the system parameters.

5.3. Other combustion processes

(i) Here we have focused on front propagation, but the AW
method has also been shown to give reasonable results for all
the cases above but considering pulse propagation instead (due
to heat losses) [32-34].

(i1) Front propagation in heterogeneous media for different
types of reaction rate functions are tackled by Xin [77]. Xin
applies variational principles similar to those developed by
Benguria, Depassier and others stated above [78] in order to
obtain bounds for periodic media [77].
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Figure 9. As in figure 8 but for Re = 1000.

(iii) The analysis of random media is of great importance since
it includes the effect of turbulent flows. Then, the reaction—
diffusion—advection equation contains a random velocity of
turbulent spectrum and zero mean ensemble. Combustion
research analyzing turbulent flows in the limiting case of thin
flames compared with the largest scale of the turbulence has
reached a result for the front speed of turbulent flames St
that reads

(120)

where Sy is the laminar front speed, At is the surface area
of the wrinkled front and A is the cross-sectional area
with respect to the direction of front propagation [30, 77].
Equation (120) is valid only if diffusive effects are small
compared with fluid dynamics effects on the front speed.
Then, the flame front is approximated by a surface wrinkled
by the turbulent velocity. However, and as noted by Xin,
the dependence of At on the background turbulent flow is
non-trivial [77]. Note that in turbulent media, the flame has
different characteristics depending on a variety of chemical
and background flow scales. Thus, flamelet combustion
corresponds to chemical reaction occurring at fast time scales
and short length scales relative to the turbulence. In some
laminar regimes, much of the interaction between combustion
and turbulence is decoupled, greatly simplifying the modeling
task [89].

(iv) Here we have considered premixed gas flames. In non-
premixed flames, two non-premixed reactants (fuel F and
oxidant O) react to form product P [91]. The exothermic
energy released by the chemical reaction causes variations in
density that, in the presence of a gravity field, may induce
a buoyancy force. The behavior of this type of processes is
usually simulated by complex numerical algorithms based on
the governing equations of energy and mass and no further
simplifications are made in order to derive limits for the
propagation speed of the front.

(v) Flame spread over beds of solid (or liquid) fuel is
essentially a 2D process. Indeed, the heat flux from the
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front flame vaporizes the fuel from the surface of the solid
which will eventually react with an oxidant and generate the
flame. This complex combustion process is not suitable for
being analyzed with a single 1D reaction—diffusion—advection
equation.

6. Distributed-delay models

The models in section 2 assume that all particles or individuals
have the same rest time between two subsequent jumps. In
general, this is not the case. Therefore, several authors
have developed general reaction—dispersal models including
a distribution of dispersal delay times. Such models are
usually referred to as reactive continuous-time random walks
(CTRWs). Vlad and Ross were the first to apply such
models to a specific example, namely a gamma distribution
of rest times [17]. Other examples can be found in [18,
19, 22]. Here we present a model that provides explicit
analytical results for the effective delay time and the front
speed [20,21].

6.1. General model with a waiting-time distribution

The following model generalizes those in section 2 to several
possible delays [20]. Let ds P(x, y, t) stand for the number
of particles per unit area that reach an area ds centered at
(x,y) at time f. Obviously the number density of particles
(or individuals) is given by those that have reached the point
considered and still not left,

t
plx, v, 1) :/ de'P(x, y, YW@ — 1), (121)
0
where W (¢ — ¢) is the probability that any particle rests for at
least a time interval ¢ — ¢’ before performing the next jump,

’

f_ dTo(T), (122)
0

oo

Wt —1t) :/ dTe(T) =1 —

and the evolution equation for P(x, y, t) is clearly

t o0 o0
P(x,y,1) =/ dT/ dAx/ dAy
0 —o0 —00

XP(x —Ax,y— Ay, t = T) o(T) ¢(Ax, Ay)

+p08(x = 0)8(y = 0)5(t = 0) + F(x, y,1), (123)

where F(x, y, t) is the net number of particles (or individuals)
appearing per unit time due to chemical reactions (or biological
reproduction).

Fourier—Laplace transforming these three equations and
using the definitions (226)—(228), we come to

Plhy, Ky, )1 — Pk, ky)P()]

190
- S

[po + F(ky, ky, $)]. (124)

Now, in contrast to section 2.3, we do not assume a Dirac
delta for the distribution of rest times. Instead, we consider an
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arbitrary distribution ¢(7") and proceed as follows.

(i) For simplicity, we assume that the space kernel is
isotropic, i.e. ¢ (—Ax, Ay) = ¢(Ax, Ay) = ¢(Ax, —Ay) =
¢ (Ay, Ax), which using the normalization of probability
(f%, dAx [T dAy ¢(Ax, Ay) = 1) leads to

o0 oo
bk, ky) = / dAx/ dAy e AR AY g (Ax, Ay)
—0o0 —00

) 00 .
=/ dAxf dAy[l—ik-A

A 2 A 2 -
_kng _ kgTy + 0(A3)} ¢ (Ax, Ay)
AZ -
=1- %(kf +k)) + 0(AY), (125)

where 0(33) stands for terms of third and higher powers
of Ax and Ay. This approximation will be valid assuming
that the dispersal kernel ¢ (Ax, Ay) is appreciably different
from zero only for sufficiently small jumps (Ax >~ 0, Ay >~ 0).
Otherwise, the second-order or ‘diffusion’ approximation
above would break down (leading to what is called long-range
dispersal in ecology [92-94]).

(i1) Analogously to equation (125), we assume that the waiting-
time probability distribution ¢ (7') is appreciably different from
zero only for sufficiently small values of the waiting time T,
so that we can use again a second-order Taylor expansion,

4(s) f T4 e o(1)
0

o) T2
/ dr [1 —sT+s27+ 0(T3):| o(T)
0

2

=1 —s(T)+SE(T2>+0(T3). (126)

Combining the three previous equations up to second order

yields

Ts . n
T(SP — Ppo)+5p — Ppo

~ A T -
=—D(k; +k})p + F (k. ky, s) + = F(ke, ky,5),  (127)

2
where we have defined the reduced diffusion coefficient
D= (A% (128)
AT
and
~ (T?)
T=2T)—
(T)
> AT o(T)T*?
- 2/ dT o(T)T — fooo—w()_ (129)
0 JoSdT o(T)T

Antitransformation of equation (127) yields an HRD equation,
namely

T %p p ?p  3*p
e, P _plZty 2z
2 912 ot axz  0y?
T 3F(x,y,1)
+ F ,V, )+ ———. 130
(x,y,1) 2 o7 (130)
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Figure 10. This figure is useful in understanding why the effective
delay time T of the random walk depends not only on the mean (7')
but also on the dispersion ¢ of the delay time distribution. Both
distributions depicted have the same mean delay (A?). But that in
(a) has a greater dispersion &, implying that a few particles (or
individuals) jump (or migrate) sooner (low values of 7'), which must
lead to a faster front, i.. to a lower effective delay 7. This explains
that 7 decreases with increasing values of the dispersion ¢, as
predicted by equation (132).

In this way, we reach the very interesting result that reaction—
diffusion systems can be described by an HRD equation (20),
not only for a single value of the waiting time (section 2),
but also for any general waiting-time distribution ¢ (7") [21].
According to equation (18), the speed of front solutions to

equation (130) is
2»\/ rL D

C = ————.
L+r, T/2

(131)

Finally, T defined by equation (129) is an effective delay time,
first introduced in [20], and its meaning can be understood by
rewriting equation (129) as

T =(T)(1 —¢), (132)

where

(T —(T)*) _(T? —(T)*

(T)? (T)?

is the dispersion of the waiting-time distribution. Physically,
we can understand the fact that 7 # (T), i.e. the presence
of the last term in equation (132), as follows. Consider
two waiting time distributions with the same mean (7) but
different dispersion ¢ (figure 10). If the distribution shape is
wide (figure 10(a)), some individuals will have low values
of the dispersive delay 7, as compared with the narrower
distribution (figure 10(b)). Intuitively, it is obvious that a
population front will travel faster if some individuals move

&=

(133)
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sooner, i.e. with a lower delay 7 (as in figure 10(a) as
compared with figure 10(b)). This is the physical reason
why the effective delay 7 (which tends to slow the front
down, see equation (131)) will be lower for figure 10(a).
Thus, T decreases with increasing values of the dispersion ¢,
as predicted by equation (132). The distributions depicted
are discrete, but the argument applies equally to continuous
distributions.

It has been shown that equation (132) breaks down for
¢ > 1 because then second-order Taylor expansions are not
sufficient and additional terms should be included (see [20]
for details).

We conclude that for any two waiting-time distributions
with the same mean delay time (7') with higher dispersion &
some particles jump sooner (lower value of T) and make the
front move faster (higher value of ¢). Conceptually, this effect
is somehow similar to long-range dispersal in ecology [92-94].
There, a few seeds dispersing at further distances can lead to a
much faster front. Here, a few particles dispersing sooner can
also lead to a faster front.

6.2. Discrete delays. Application to the Neolithic transition

The transition from hunter-gatherer (Paleolithic) into
agricultural (Neolithic) economics is a very important process
in human history. In Eurasia, it took place in the period
13000 to 5000 years ago, in the form of a range expansion
of farming populations from the Near East [95]. This process
can be followed in space and time by using the archaeological
record [96]. In this section we review this application of
reaction—diffusion fronts.

6.2.1.  Fisher’s model. The first quantitative model of
the Neolithic transition came after Cavalli-Sforza noted that
Fisher’s model (24) could be applied to this process. Then the
front speed is predicted by equation (23) as

CFisher = 2\/ rLD- (134)
Ammerman and Cavalli-Sforza [95] gathered the

archaeological data available and used them to estimate a
observed speed of about 1kmyr~' (via linear regression).
They also estimated the diffusion coefficient as D =~ (A2)/T,
and found anthropological observations in the literature from
which they obtained the characteristic values ry, = 0.032 yr~!,
(A?) = 1544km? and T ~ 25yr. Then Fisher’s speed (134)
yields ¢ ~ 2.8kmyr~!. This prediction is much faster than
the observed speed that they obtained from the archaeological
record, namely 1.0 & 0.2 km yr‘1 [4,95].

The two-dimensional formula (19) yields the more
accurate estimation D = (A?)/4T 386km?/gen =
15.44 km? yr~!, leading to cpigher = 1.4kmyr~! [4], but this is
still outside the observed range.

6.2.2. Single-delayed model. A more refined approach [4]
noted that Fisher’s equation (24) does not take into account
the fact that newborn children spend some time 7 with their
parents until they become adults and can migrate. Therefore, it
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is reasonable to use the HRD equation (20) instead of Fisher’s,
and the speed is given by equation (18))

2«/7‘]_ D

1+FL§

(135)

Csingle delay =

Using the same parameter values as above, this yields a speed
of Csingle delay = 1.0kmyr™!, which is consistent with the
observed range.

6.2.3. Multidelayed model. ~More recently, Cavalli-Sforza
suggested that a single value for the rest time may not be
a realistic description, because in real populations not all
children will leave their parents’ at the same age. In fact,
this was the original motivation to develop the general theory
of distributed delays presented in the previous section [20].
According to equation (131),

2\/ ry b

== 136
l+r T/2 (136)

Cmultidelay =

where D and T should be estimated from equations (128) and
(129), respectively.

A careful examination of the original demographic
observations of preindustrial farmers [97] showed that the
observed rest time distribution is 77 = 27yr, p; = 0.46;
T, 355yr, p, = 0.51; T 45.5yr, p3 = 0.02;
T, = 55.5yr, ps = 0.01°. Then

(T) = 32.0yr. (137)

Equations (128), (129) and (136) yield D = 386 km?/gen =
1206 km?>yr~!, T = 31.1yr and Cpuiigelay = 0.8kmyr™!,
respectively (using, as above, (A%) = 1544km? and r
0.032yr~!).  This implies a correction of 17% relative
to model (ii) above, so that this effect should not be
neglected a priori.

The detailed analysis above of the demographic data is
also interesting, because the estimation 7" & 25 yr [95] (used
in models (i) and (ii) above) is essentially the mean age at
which individuals leave their parents®, but the multidelayed
model (iii) shows that the relevant quantities are the mean
time difference between the parents’ and the children migration
(averaged over all children), (T'), and the effective delay time,
T, given by equation (129).

6 Table 5 in [97], p 58 gives the age distribution of unmarried people for
preindustrial agriculturalists which (neglecting death effects, which we cannot
estimate, as a first approximation) allows us to determine the number of people
who have left a domestic group as N1 = 44, N = 49, N3 = 2, N4 = 1 (from
which our values of p; follow directly), with mean ages ap = 27.5, az = 37.5,
ay = 47.5. Concerning ay, in the same [97, p 67] it is stated that children do not
become marriageable (i.e. able to disperse according to the Majangir custom)
until they are a; >~ 15 yr old. Note that these values of p; and a; yield a mean
(a) ~ 24yr, which (adding about 1yr from the parents migration until the
child’s birth) is indeed consistent with the value of 25 yr for the generation
time used in [4,95]. However, a final correction is necessary. If a son/daughter
leaves their parents when he is, e.g. 19 yr old, to this we should add the time
interval from the migration of his parents until his/her birth. Since the mean
number of children per family for preindustrial agriculturalists is about 6.5 [98]
and their average birth interval is close to 2.5 yr ( [95, p 66]), we find that the
mean time interval from the migration of the parents until a child’s birth is of
about 8 yr. Therefore, we have used 7; = a; + 8 yr to obtain our values of 7;
in the main text, and (T') ~ (a) + 8 yr >~ 32 yr.
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Figure 11. Predictions for the speed of the wave of advance of
farmers in the Neolithic transition according to the model with a
single delay (dashed curves) and to the more realistic model with
several discrete delays (full curves). The predictions of both the
multidelayed model and the single-delayed one are consistent with
the front speed from the archaeological data (1.0 = 0.2kmyr~') in
this particular case. However, the multidelayed model is more
accurate, and its corrections relative to the single-delayed model are
large (about 20%).

To what extent does the prediction (136) of the multi-
delayed model depend on the uncertainties in the values of
the parameters? In figure 11 (continuous curves) we see that,
for many values of r and (A?)/(T) in the range allowed by
independent observations (hatched rectangle), the predictions
of the multi-delayed model are consistent with the observed
speed (0.8-1.2kmyr~! from the observations quoted above
[4,95]; for additional data see [96]). Itis also seen in figure 11
that the corrections relative to the single-delayed model are
large, about 20% (essentially because the reevaluation above of
the demographic dispersal data shows that the effective delay
T ~ 31yr is higher than the value T = 25yr used in the
single-delay model [4]).

This discrete multi-delayed model is also applicable to
physical [26,99] and biological systems [100, 101] such that
observations imply several possible, discrete values of the rest
time in the random walks of particles or individuals.

6.3. Continuous delays. Application to virus infections

In the previous section, we have considered a discrete set of
possible waiting times (between subsequent jumps) because
the data available for that application were recorded as a
discrete set. However, in many cases the measured distribution
of waiting times is continuous. For example, in figure 12
we reproduce the so-called one-step growth of the virus T7
infecting E. Coli bacteria. This experiment refers to a
homogeneous medium of cells infected at + = 0. If all viruses
took exactly the same time to kill a cell and reproduce, figure 12
would be a step function, and the waiting time distribution
would be a Dirac delta. Instead, the gradual rise in the virus
concentration in figure 12 indicates that it takes a different time
for each virus to kill the cell it has infected and reproduce, and
that a continuous distribution of waiting times is appropriate
for this application. This interpretation of one-step curves
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Figure 12. Virus concentration versus time in a homogeneous
medium of cells infected at t = 0. The fit to the main plot is logistic.
Its time derivative (inset, full curve) makes it possible to note that a
Gaussian (dotted curve) is a good description of the waiting-time
distribution of the T7 bacteriophage.

is well known in virology [102]. For the case in figure 12,
we see that the range of waiting times (i.e. the rise in the
curve) is between 14 and 23 min approximately, so the width
of the rise is about 7 min, i.e. almost 40% of the mean value of
18.4 min. This is not negligible, so the distribution of waiting
times should not be neglected a priori. This section reviews
the waiting-time distribution for this system and its front
speed [21].

As mentioned above, the experimental data in figure 12
were obtained for a homogeneous medium of cells infected
at ¢t = 0. Then, since each virus disappears and gives rise
to a progeny (or yield) of Y viruses after a time 7 with
probability ¢(T'), obviously the concentration of viruses will
in that experiment evolve according to

V= Viso +/ AT o(T)(Y = DVimo,  (138)
0

so that the waiting-time probability distribution can be obtained
from the curve in figure 12 as

1 dv

=y A

(139)
The inset in figure 12 shows the time derivative of the
main figure 12 (full curve), and a Gaussian fitted by least-
squares (dotted curve). It is seen that a Gaussian is a very
good description of the waiting-time distribution of these
viruses. Therefore, here we will use a Gaussian waiting-time
distribution,

o(r) = { 4P {_ (

0

2
T_W)} B

B (140)

if T <O,

so that the normalization constant (i.e. the value of A such that
fooo dT ¢(T) = 1) and the mean squared waiting time (7'?)

22

The former results become much simpler if we consider
the special case that all viruses have a waiting time substantially
different from zero. In other words, if we consider the case in
which the time between the arrival of a virus and the departure
of its progeny is not negligible for any of the viruses (below
we shall see that this is indeed realistic). Intuitively, we may
express this condition by means of the mathematical inequality

T=0=A ()’
(T =0) = Aexp —<?)
L Pmax = @(T =(T)) = A, (143)
or
(7)) 1 144
exp _<?) < 1. (144)

In this special case, the first line in equation (140) is
approximately zero for T < 0, and we may approximate the
normalization condition as follows:

1=/ chp(T):/ dT A exp [—(
0 —00

T <T>ﬂ

B
(145)
which yields
1
A ——, 146
NG (146)
and equation (142) becomes the very simple expression
o0 T—(T)\
(T 2/ dT Aexp | — (#)
. B
32
=5+ (T, (147)

which we shall see below is realistic and very useful.

The Gaussian curve fitted to equation (140) is shown as a
dotted curve in the inset in figure 12. It has the parameter values
(T) = 18.38min and B = 1.634min. Using these values
into equation (142) yields (T?) = 339.1min?>. The same
result can be found from the approximation (147) (because
for these values exp [ — (%)2] ~ 1073, so that the condition
(144) holds). Then, using equation (129) we can estimate the
effective waiting time, T = 18.31 min.

For virus infections the diffusion coefficient D must be
replaced by an effective one to take into account the presence
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of bacteria (which hinder virus diffusion), given by Fricke’s
equation [103]
1-f

1+£
X

Desy =

D, (148)

where x takes proper care of the bacterial shape (for E. Coli
x =~ 1.67 [5]) and f = By/Bmax is the concentration of
bacteria relative to its maximum possible value (B is the initial
bacteria concentration far from the inoculation origin, and it
depends on the initial nutrient concentration).

The uninfected bacteria number density B(x, y, ) and
infected bacteria density I (x, y, ) evolve according to the
following well-known equations:

B _ VB (149)
8t - 1 ’
o vB—tor(1- 1 (150)
ot - 2 Tnax '

where k; is the rate constant of the virus adsorption reaction
[V + B — [I], k; the rate constant of the infected bacteria lysis
reaction [/ — Y -V]and I« the saturation density of infected
cells, so the reaction kinetics for viruses is

: )

max

F(x,y,t)=—kiVB+YkyI (1 — (151)

Therefore, using the HRD equation (130) we have a
system of three simultaneous partial differential equations,

[z

T
Vt"‘EVttzDeferr_kl
+Yky i1 (1 +T I(1
’ 2 Ias
B,=—k1VB,
=)

max

T
VB + E(VB),

1 1

Imax

)]

I, =kiVB — kI (1 — (152)
which generalize those considered in [5], where a single delay
(i.e. a Dirac delta distribution for ¢ (7)) was considered.

The solution obtained by linearization in the front frame
z=r—ct — 00,(V,B,I) = (ey, e, &1) = &g exp[—Az] =
(0, By, 0), is obtained by requiring the determinant of the
matrix corresponding to the linearized form of equations (152)

to vanish. This yields

0= <—1 + Z52> oA+ (—1 + <
2
+ (;«15 ( ) +5> A=k (Y — 1), (153)

1 T Y —1
> ( )

where k1Bo/k, and T Tkz are dimensionless
parameters. This equation can be solved numerically in order
to find out the dimensionless front speed ¢ = ¢/+/Deirk, such
that ¢ = min,.o[c(X)], where ¢(A) is given by characteristic
equation (153). Using the rest of the parameter values from
the literature [5] and solving equation (153) numerically gives

1+T( +1)
2
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Figure 13. Predictions from the continuous-distribution
waiting-time model (curves) versus experimental data (symbols
with error bars) for the front speeds of T7 viruses infecting E. Coli
bacteria.

the virus front speed predictions shown in figure 13 (curves),
which agree well with the experimental data from [67,104,105]
(symbols). No free or adjustable parameters have been used.

From figure 13 it is clear that physical models can explain
virus front experiments, contrary to the widespread misbelief
that they are driven by unknown biological factors [105]. Very
recently, the conditions under which the shape of ¢(7') has
an important effect on the front speeds have been analyzed in
detail [21]. Also, approximate explicit formulae for the front
speed have been recently derived [39].

Future research topics on this area could include
(i) computing virus concentration profiles and (ii) analyzing
the transient after which a mutation induces a change in the
front speed. For both processes, there are experimental data
available and models similar to that presented here could be
applied.

We stress that the general framework in section 6.1 can be
applied to any waiting-time distribution function.

6.4. Cancer tumors and anomalous transport

Fedotov and Iomin have recently applied exponential and
anomalous waiting-time distributions to model cancerous
growth [44].  Experimental evidence shows the lower
proliferation rate of migratory cells. This is modeled by
means of two mutually exclusive cell states, one of them
corresponding to migration (state 1) and the other one to
proliferation (state 2). Fedotov and Iomin assume that a cell
remains in state 1 during a waiting time 7 and then switches
to state 2. After a waiting time 75, it switches again to state 1.
They derive front speeds in 1D space for two kinds of waiting-
time distributions.

(1) Exponential waiting-time distributions
@(T;) = Biexp(=Bi T), (154)

where §; is the switching rate from state i into the other
state. Then the evolution equation of the migratory cells
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(i) The case in which the function W(¢), defined by tT t
equation (122), is of the form ;
Vi)~ 70 <y <. (156) i
This second case corresponds to anomalous transport t+T 006 t+T e t+T500
(diverging mean waiting time (7)), leading to fractional @ (x (x=Any-4y) (b) xy

derivatives for the temporal operator, and it slows down the
cancer spreading rate [44]. Anomalous reaction—diffusion
equations are also discussed in [26] for power-law waiting-
time distributions ¢ (7).

This is a field of research to which physical models
can make additional interesting contributions in the future,
e.g. (i) extending such 1D approaches to more dimensions
and (ii) determining the parameter values from independent
observations to perform quantitative predictions for the front
speed.

Anomalous transport can also arise in the form of
divergent second-order moments (A2) from a power-law
dispersion kernel (Lévy flights), leading to fractional spatial
derivatives [27]. Such kernels are not physically realistic
(because in real systems arbitrarily large jumps are always
truncated). But fractional derivatives arising from such
kernels can provide a realistic description during a transient
time, before the effect of the truncation becomes important
[99]. Similarly, a waiting-time distribution must always be
truncated in real systems (because arbitrarily long waiting
times are not possible). Therefore, fractional remporal
derivatives arising from such distributions may again be useful
in the description of transient effects. Finally, very recently
dynamics compatible with fractional temporal derivatives have
been experimentally observed in the long-time regime by
analyzing the paths of migrating cells [106]. However, it
must be stressed that such anomalous diffusion effects (e.g.
the mean-squared displacement (r2(¢)) not being proportional
to time) do not necessarily imply infinite, non-physical values
for some moments ((T), (A?), etc) or fractional-derivative
equations (because they are also predicted by other kinds of
evolution equations [107]).

7. Sequential models

7.1. Temporal order of reproduction and dispersal

As surveyed in the previous sections, a lot of work has been
done based on models derived from the general evolution
equation (1). Such models are appropriate for many physical
systems (e.g. combustion flames) as well as for biological
species such that their dispersion and reproduction are
simultaneous and independent. However, this is not the case
in some important biophysical phenomena. For example,
consider the dispersal of seeds from trees. Such dispersal takes
place during a specific period of the year only (e.g. fall), always
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Figure 14. A filled circle represents a tree, and each empty circle
stands for a seed produced by it. Reproduction is represented by the
dashed arrow, dispersal by the continuous arrow. (@) Non-sequential
model, equation (1). (b) Sequential model, equation (157). Model
(b) is more realistic than (a), because in model (a) the parent tree
disperses away, instead of its seeds. Therefore, in section 7 the
sequential equation (157) is applied to tree species instead of
equation (1).

immediately after reproduction (seed production). Then,
dispersal and reproduction are clearly neither simultaneous nor
independent. For this reason, the following time-ordered (or
sequential) evolution equation for the adult tree number density
must be used [108, 109], instead of equation (1),

+00 +00
P(X,y’t"‘T):RO/ / P(X—Ax,y_Ay,t)
—00 J—00

¢(Ar, Ay)dAcdAy, (157)

where Ry is the net reproductive rate (number of seeds per
parent tree and year which survive into an adult tree) and
T is the generation time. Note that the difference with
non-sequential models is that the reproduction rate appears
multiplicatively in equation (157) rather than additively as in
the non-sequential equation (1).

Another way to introduce this important equation is
depicted in figure 14. Equation (157) is more realistic than (1)
because, as shown in figure 14(b), according to (157) seeds
(empty circles) are dispersed away from their parent tree (full
circle), which does not move. In contrast, as figure 14(a)
shows, non-sequential models based on equation (1) assume
that (i) trees move away and (ii) seeds stay at the original
location of their parent tree.

Equation (157) and figure 14(b) are exact only for species
with non-overlapping generations (i.e. such that parent trees
reproduce only once and then die) [108, 109]. But previous
results in 1D space show that substantially more complicated
models (with overlapping generations) do not change the order
of magnitude of the front speed [110]’, so the approximate
equation (157) has been applied in recent work [11,12,25,35].

It has been noted that a macroscopic derivation of
sequential models (analogous to section 2.2 for non-sequential
models) does not seem possible [12]. The reason is that
physical macroscopic equations (section 2.2 and figure 14(a))
do not take into account the fact that in biological populations,
it is usually the new generation of individuals that disperses

7 See [94], especially figure 15
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away (figure 14(b)). Indeed, this is the main feature of
sequential models (equation (157)).

Appendix B contains an age-structured derivation of the
sequential evolution equation (157).

The front speed problem for equation (157) is well known
in 1D space [108—110]. In section 7.2 we shall review some
recent results in 2D space and a specific 2D application [11].

7.2. Application to Reid’s paradox

Consider an isotropic kernel, i.e. such that ¢ (A, A,) depends

only on
A= A2+ Ag.

Obviously the normalization of probability requires that

[oo /OO dA,dA, ¢(A) =27

and this dispersal probability per unit area ¢ (A) (i.e. into a
rectangular area dA,dA,) is related to that per unit length
©(A) (i.e. into a 2D ring of area 2w AdA) as

(158)

/OO dA Agp(A) =1 (159)

0

P(A) =2mAp(A), (160)
with the normalization condition
o0
/ dA p(A) = 1. (161)
0

This is useful because the measured or computed kernels are
usually ¢ (A) rather than ¢ (A) [111].
Bimodal kernels have two components,
@(A) = pLoc(B) + pses (D), (162)
with pp the probability of long-distance dispersal (LDD)
and ps that of short-distance dispersal, and ¢;(A) the
corresponding kernels (i = L, S). It has been long suspected
that such kernels (with characteristic distances differing by
several orders of magnitude) may explain a very important,
unsolved biophysical problem, namely the fact that the
observed speeds of forest postglacial recolonization fronts are
much faster than those predicted by single-kernel reaction-
dispersal models. This disagreement is called Reid’s paradox
[110]. Many authors have shown that hypothetical LDD
events could solve Reid’s paradox [110] using kernels fitted
to short-distance data and purely hypothetical LDD events
[94, 110] (and almost always using 1D models). However,
Nathan et al derived and tested very interesting kernels with
two components: a short-distance component ¢s(A) (of the
order of 10m) and a second, very rare, LDD component
@L(A) (covering distances of 10°-~10*m, but observed for
only about 0.2% of seeds released from the parent tree,
so pp = 1 — ps K ps). They derived such bimodal
kernels by means of fluid dynamics simulations of atmospheric
transport including turbulent-uplifting events that had been
previously neglected. They also checked their new kernels by
comparing predicted vertical deposition patterns and uplifting
probabilities to observed data [111-113]. This opened the
possibility to explain Reid’s paradox using kernels which
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Figure 15. Front speed in 2D versus net reproductive rate, for an
unimodal short-distance kernel ¢s(A) [11]. Stars: 2D computer
simulations. Full curve: analytical 2D CSRWs,

equations (163)—(165). There is good agreement. The 1D speed for
the same kernel is included for comparison (dotted curve). For
bimodal kernels it is found that computer simulations cannot yield
accurate results within a reasonable computing time, but the DSRW
model overcomes this limitation (figure 16).

are not hypothetical, but derived from physical principles.
Recently, front speed formulae for such complex kernels have
been derived and tested by 2D simulations of reactive random
walks on grids, showing that the predicted front speeds are
about 10>°~103>myr~! (which are two orders of magnitude
higher than those obtained neglecting the LDD component,
i.e. for ¢s(A)) [11]. This possible solution to Reid’s paradox
is reviewed below.

7.2.1. Continuous-space random walk (CSRW) model. ~Asin
section 2.3, assume that for + — oo the front is approximately
planar at scales much larger than that of individual dispersal
events, so that we can choose the x-axis parallel to the local
velocity of the front. Let ¢ = |c,| stand for this speed (¢, =0
in the local frame just introduced). We look for constant-
shape solutions with the form p = pgexp[—A(x — ct)] as
Xx — ct — oo and, again, assume that the minimum speed is
that of the front (we will check this assumption by means of
numerical simulations in figure 15). Then equation (157) leads
to the asymptotic (¢ — o0) speed of 2D fronts

. In[Rop(M)]
n —

c= 1}1>10 T , (163)
where the minimization is relative to A,
[e.e]
b0 = [ dsp) ) (164)
0
and
1 2
Iy(AA) = —/ dO exp[AA cosf] (165)
27T 0

is the modified Bessel function of the first kind and order zero.
The kernel per unit length ¢ (A) is related to that per unit area
¢ (A) by equation (160).

It is worth mentioning that several works on Reid’s
paradox [94, 110] have applied the corresponding 1D result
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instead of equations (163) and (165). In fact, it is easy to see
thatin 1D an equation similar to (163) holds but equations (164)
and (165) do not. Thus, the speed c is different in 1D from
in 2D. Indeed, it has been shown recently that the 2D speed is
always slower than in the 1D case for the same kernel ¢(A)
provided that it is isotropic [11]. Since in this review we
are interested in Reid’s paradox, which refers to forest range
expansions that took place in 2D, we will focus on the 2D case
here (a comparison with 1D speeds will be included only in
figure 15).

7.2.2. Reactive random-walk simulations on grids. Now
we are not dealing with a differential equation, such as
equation (1), but with an integrodifference equation in 2D,
equation (157). Therefore, in sharp contrast to section 5
(combustion flames) and previous work [1], numerical
simulations here cannot use finite-step approximations to
derivatives. Thus, recent work [11, 12,25] uses simulations
that may be called of random walk or molecular dynamics type
(or cellular automata, in the continuous limit for the possible
values of p(x, y, t)). Such simulations are performed on a 2D
grid, with nearest neighbors separated by a distance D. Initially
px,y,0) = 1at(x,y) = (0,0) and O elsewhere. At each
time step, the new number density of trees p(x, y,t + T) at
all nodes of the 2D grid is computed as follows. In agreement
with equation (157), the seed production Ryp(x, y, t) at every
node is computed® and then redistributed among all grid nodes
using the kernel ¢(A). Such 2D simulations have been
performed [11] for values of Ry and T typical of the yellow
poplar (Liriodendron tulipifera)®, because the long- and short-
distance kernel components [¢s(A) and ¢ (A), respectively]
of this tree species were determined [111].

Consider first a very simple, short-distance unimodal
kernel ¢s(A), which is approximately constant for dispersal
distances A < 15mand zero for A > 15m[111]. Using a 2D
grid with nearest neighbors separated by a distance D = 1 m,
the simulations agree with the CSRW, as shown in figure 15'°.
This shows (i) the validity of the minimum-speed conjecture!!,
and (ii) the need to take equation (160) into account in the
simulations'?. But ¢g(A) is a unimodal kernel. For bimodal
ones the time required for the simulations is prohibitively

8 Note that equation (157) does not include saturation. We have checked
that including saturation in the 2D simulations, the front speeds are the
same. Obviously the same happens in the CSRW and DSRW approaches
after linearization.

9 According to field observations in sites close to those where the dispersal
kernel was measured, the fecundity f of this species is of the order 10* seeds
dispersed/(tree yr), and its post-dispersal seed-to-adult survival probability
is s ~ 0.06% (see [111] and citations [25] and [26] therein). Thus
the net reproductive rate, Ry fs, has been estimated in the range 6—
60 seeds/(tree yr). The age at first reproduction (generation time) of the same
species is T >~ 20 yr ([110], table 1).

10 The numerical simulations agree with equation (157) but not with
equation (1) with e.g. R[p(x, y,1)] = Ro p(x, y, ).

I The minimum speed (equations (163)—(165) for the CSRW; equation (169)
for the DSRW) is that of the front: this is seen by comparing with simulations
(full curve in figure 15 for the CSRW; rhombi in figure 16 for the DSRW).

12 The CSRW uses ¢(A), which is the kernel found in [111]. But the
simulations and DSRW use ¢ (A). Otherwise the agreement in figures 15
and 16 cannot be attained. For the DSRW, see especially equation (167).
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long'3. Therefore, molecular dynamics simulations are not
practical to test the 2D analytical result (163) for bimodal
kernels. In the following section we review a fast, efficient
approach to test whether equation (163) holds or not for
bimodal kernels [11].

7.2.3. Discrete-space random walk (DSRW) model. This
model is not exact. But it is necessary to check the CSRW
model for bimodal kernels. The DSRW is closely analogous
to the numerical simulations, in the following sense. Both in
the DSRW and the simulations, the 2D continuous space is
replaced by a grid of points (nodes) with nearest neighbors
separated by a distance D along the x- and y-axes. The
nodes are the only points available for seeds and trees. First
consider the very simple, highly idealized case in which any
tree disperses seeds only to its eight nearest neighbors on the
grid. Obviously, these eight final dispersal nodes lie on a square
with side 2D and center at the parent tree, as follows. The
closest four nodes are at a distance £ D away along the x- or
y-directions, and the next four are at a distance £ D away along
both directions, i.e. on the vertices of the square (at distance
V'D? + D? = D+/2 from the parent tree). Then equation (157)
simply becomes

P(D)
px,y,t+T) = RO{ 2

+px+D,y,t)+px,y—D,t)+ px,y+D,1)]
P(D+/2)
+T[P(

[P(X_D’y’t)

x—D,y—D,t)+p(x—D,y+D,t)

+p(x+D,y—D,t)+p(x+D,y+D,t)]}, (166)

where the first four terms correspond to horizontal and vertical
‘jumps’, whereas the last four terms are due to diagonal jumps,
and the jump probabilities are, from equation (160),

pA)  _ _e(A)/CrA)
Yio0(A) X eA)/2rAy)’

P(Ai) = (167)

For the simple case of equation (166), n = 2 and the only
possible dispersal distances are A; = D and A, = D+/2.

To derive the speed, we use again the same approach as
that applied to the CSRW model above, but now to the DSRW
equation (166). This yields

n [Ro <P(D) [cosh(AD)+1]

+P(Dﬁ)cosh(xD)>]

c=min

>0 AT

(168)

Note that equation (168) is a very simple approximation
(DSRW) but is completely analogous to the exact (CSRW)
speed (163). It has been found (e.g. for ps(A) above) that this
extremely simple DSRW yields a speed (168) which disagrees
with that from the CSRW [11]. Therefore, consider dispersal
to nodes not on a single, but on many squares (j = 1,2, 3,...)

13 Several days of computing time are not enough for the bimodal kernel; in
contrast, for the kernel ¢s(A) the necessary computing time is about 30 min
(these results have been obtained for a virtual grid of 1000? nodes and using a
personal computer with an Intel Pentium III, 393 KB RAM and 1133 MHz).
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centered at each parent tree. A square with side 2jD will
obviously have eight j nodes, namely four at a distance jD,
four at a distance j D+/2 and also (except for the simple case
j = 1 above) eight nodes at a distance /(j D)2 + (i D)? for
i = 1,2,...,j — 1. Finally, in order to use the measured
kernels [111] we need to restrict dispersal to a maximum
distance in whatever direction, ry,. Then it is not difficult
to write the analogue to equation (166) for bimodal kernels
(162) and see that the speed (168) is generalized into

[cosh(AjDy) + 1]

N
1
= —1In|R § P.(jD
c= rnlgA n[ o pL ) (PL(jDr) >

A>
Jj=0

+ PL(jDL~/2) cosh(AjDy)

j—1
+y [11( (jDL)? + (iDL)?)
i=1

cosh(AiDy) + cosh(AjDy) i|>
x
2

[cosh(Aj Ds) + 1]

Ns

+Ds Z <Ps(jDs) >
j=0

+ Ps(j Dsv/2) cosh(Aj Ds)

j—1
+y [Ps( (jDs)? + (i Ds)?)

i=l1

(169)

8 cosh(Ai Ds) + cosh(Aj Ds) i|>]
2 9

where Ni, = rmaxr/DL, Ns = rmaxs/Ds, and the terms with

V (jDs)? + (i Ds)? arise from jumps in directions different
from 0°, £45°, 180° and £90°. The probabilities are related

by equation (167) to the corresponding dispersion kernel, for

example
. ¢L(jDL) (iDL ¢L(jDLV2)
PL(jD
LD =5 Dy /Z[ZmDL 27jDLN2
c 1</)L<\/(]Ds)2+<zDs)2>} (170
= 271/(jDs)* + (i Ds)?

For the yellow poplar (Liriodendron tulipifera), the LDD
component of the kernel derived (and favorably compared with
observations) in [111-113] can be fitted to a curve of the form

0 A< 10°m

eL(A) = { 10390372301 10°m < A < 10*m (171)
0 A > 10*m

SO rmaxl. = 10*m, whereas, as mentioned above, its short-

distance component ¢s(A) can be taken as approximately
constant for A < 15m and zero for A > 15m, so
FmaxS = 15 m.

10000 . . . : 500.0
P = = o o =
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= 1000 1 L7LT s ™s O L100m 4500
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Figure 16. Front speeds in 2D versus net reproductive rate [11].
Curves: CSRWs, equations (163)—(165). Symbols: DSRWs,
equation (169), using the values of Dy, and/or Ds in the legend (in
metres) and the corresponding kernel(s). The bimodal kernel for the
yellow poplar, from [111], leads to the middle curve. It thus predicts
speed of about 10>—10° m/generation (in contrast, the short-range
unimodal kernel (lower curve and stars, the same as in figure 15)
predicts front speeds several orders of magnitude lower). This may
solve Reid’s paradox.

7.2.4. Propagation speeds. Figure 16 presents the results
for the bimodal kernel (162), where p; = 0.00202 and
ps = 1 — pp, are the probabilities of long-distance and short-
distance dispersal (obtained from [111]). The results for
the unimodal kernels ¢r.(r) and ¢s(r) are also presented for
comparison.

Both the 2D DSRW and the 2D CSRW models show
conclusively that the front speeds for the bimodal kernels
(162), using the parameter values derived in [111], are about
10-103 myr~!, i.e. two orders of magnitude faster than those
for the unimodal, short-range component gs(r) (figure 16).
Speeds of 10%-10° myr_1 are, in fact, those required to solve
Reid’s paradox [110].

Note from the upper curve in figure 16 (100% of seeds
with LDD, ¢ ) that the same order of magnitude (10> myr~!)
is obtained as with only 0.2% of seeds with LDD (middle
curve).

It is worth stressing that short-distance kernels ¢g () have
been measured experimentally many times. But bimodal
kernels with a long-distance dispersal (LDD) component ¢y (7)
were derived by a mechanistic (or physical) model for the first
time in [111].

We close this section with the conclusion [11] that Reid’s
paradox of rapid forest range expansions can be solved (as far
as the order of magnitude is concerned), by taking into account
the bimodal dispersal kernels derived and favorably compared
with data in [111-113].

Similar results (and detailed comparisons between
predicted speeds in 2D and 1D) have been very recently
obtained for a list of tree species such that their invasion
spread rates have been measured from the paleorecord (using
reproductive rates and dispersal kernels appropriate to each
species). The predicted rates are again of similar magnitude
to the measured ones [35].
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Figure 17. A filled circle represents a couple of parents (a father
and a mother) and each empty circle stands for one of their sons or
daughters. (a) Migration before reproduction, equation (172).

(b) Reproduction before migration, equation (173).

(c) Reproduction during migration, equation (174).

(c)

8. Cohabitation models

8.1. Special features of human populations

In section 2 we have introduced non-sequential models
(see figure 14(a) and equation (1)). They are useful in
many physical and biophysical systems. But in section 7
we have reviewed the fact that such models are known
to be inappropriate in some cases (e.g. for tree species).
Then sequential models can be applied [94, 108—110] (see
figure 14(b) and equation (157)). This crucial point shows
the importance of taking into account biological factors when
applying physical models to systems composed of living
organisms.

In some cases further considerations are necessary. For
example, consider human populations. Non-sequential models
based on equation (1) have a drawback because they would
imply that newborn children (empty circles in figure 14(a))
stay at their birth location, whereas their parents (full circles)
migrate away from them. A more realistic framework is
provided by sequential models based on equation (157),
because according to them migrating parents live at their
final location with their newborn children (figure 14(b)).
But below we will see that a more detailed discussion
is necessary before applying equation (157) to human
populations.

As explained in section 7.1, the non-overlapping
generations model (figure 14(b)) does not take into account the
yearly reproduction and dispersal of seeds: all trees reproduce
only once and then die. Also, the time step is one generation,
and it is the same for all trees (e.g. T = 20yr for the yellow
poplar, from the previous section). Similarly we can consider
(again as an approximation) a model in which all humans take
the same time interval to reproduce (e.g. T 32yr, from
section 6.2). But there is a fundamental difference between
trees and humans. Trees produce seeds at the location of
the parent tree, and the parent tree cannot move. In contrast,
humans can have children not only before migration, but also
after or during it (figure 17). Mathematically, we have the
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following three main cases.

(a) Migration before reproduction (figure 17(a)). The
evolution equation is
+00
P(X,yat"'T):/ f p(x_Ax’y_Ayat)
X P(Ax, Ay)dA,dA,
+00 p+00
+R|:/ / p(x — A,y —A,1)
—00 J—00
X P(Dy, Ay) dA, dAy], (172)

with R[...] an appropriate reproduction function
(asdiscussed below). The first term on the rhs corresponds
to the parents (black circles in figure 17(a)) and the last
one to their children (empty circles). Note that the integral
within the parentheses [...] gives the population density
at the arrival location.

(b) Reproduction before migration.
equation is (see figure 17(b))

+00 +00
p('x’y’t-'_T):/ / P(X—Amy_Ayvl)
—00 J—00

X ¢(Ay, Ay)dA, dA,

+00 p+00
+/ / Rl:p(x—Ax,y—Ay,t)i|
—00 J —00 ’

X ¢ (Ay, AAA, A, (173)

Now within the parentheses [...] the population density
at the origin location appears (instead of an integral).

(c) Reproduction during migration. None of the former
two equations applies in general. Instead, according to
figure 17(c)'*

+00
p(x7y7t+T)=/ f P(X_AXay_Ayat)
—00 J—00

X ¢(Ay, Ay)dA, dA,

+/ 00/ OOR|:p()c’,y/,t/):|

Then the appropriate

X @Ay, Ay)dAdA,. (174)
Consider the following reproduction function [16],
Ry— Dp(x, y,t if p <
RIp(r. y.1)] = (Ro—Dp(x, y, 1) TP < Pmax (s
0 if p 2> Pmax.

If the net reproduction rate Ry is assumed to be independent
of the jump length vector (A, A,), position (x, y) and time 7,
then at the leading edge of the front (p < pmax) all three cases
yield the same linearized equation, namely

+00 +00
p(x,y,t+T)=Ro/ / plx — Ay, y
—00 —00

X ¢(Ay, Ay) AL dA,,

Aya t)

(176)

14 In equation (174), we have assumed for simplicity that reproduction takes
place at (x’, y', t'), so that p(x', y',t") = p(x — Ay, y — Ay, t) according to
figure 17(c). Equation (174) can be easily generalized to the case of several
possible locations of the reproductive event (using a probability distribution
that reproduction takes place at (x’, y’, 1)), and also to the case of several
possible reproductive events during a single migration. The result is the same
in all cases, namely equation (176).
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so the front speed will be the same for the three cases
above'>.

Obviously, equation (176) is nothing but equation (157).
Therefore, although some species (e.g. humans) have special
features relative to those considered in the previous section
(e.g. trees), the former careful analysis shows that it is still
reasonable to apply equation (157) if the net reproduction rate
Ry is constant [16]. But in the case of human populations it
seems clearer to refer to equation (176) as a cohabitation model,
rather than a sequential one (because unlike trees, for humans
the time order of reproduction and dispersal is not fixed, see
figure 17). The term cohabitation refers to the fact that newborn
children have to spend some time with their parents until they
can survive on their own, a behavior that is not captured by
classical models (figure 14(a) and sections 2 and 3). Below
we review some recent work on this topic [12, 16,25].

8.2. Cohabitation reaction—diffusion (CRD) fronts

Performing Taylor expansions up to second order in space and
time, equation (176) becomes
1-— R()
T
+ nyny + Dy pyx + Dyp}’y)’

T
p+p+ FPu= Ro(=U,px — Uypy

(177)
where Uy, Uy, D, D, and U, are given by equations (4)—(6).
Equation (177) is a cohabitation analog to equation (2).
As in section 2.3, we look for solutions with the form
p = poexp[—A(x —ct)] as x — ct — oo, with ¢ > 0 and
A > 0. Then equation (177) yields the characteristic equation

52 < Tc?

Prfo= =5~
Solving this equation for A and requiring for it to be real, we
obtain the condition

g(©) = (1 +2(Ry — 1)) — 2cU,Ry
Ro—1

RO_l:O.

>+A(—c+UXR0)+ (178)

+U?R; — 4Ry D, > 0. (179)

It is easily seen that g(c) is convex from below, and that the
equation g(c) = 0 has one negative and one positive root for c,
say c_ and c,. Therefore, the minimum possible value for
¢ > 0 corresponds to c,, and we finally obtain the speed

4
RoU, + \/RO(RO -1 [?(mo — 1D, — zRon}

Cc =

2Ry —1)
(180)
For the special case of a non-biased random walk, this becomes

4RoD Ry — 1
T 2Ry —1’

where we have introduced D = D,.

lim ¢ =
U,—0

(181)

15 Note that the term —1 within the parentheses cannot be omitted in the
definition (175) because, otherwise, in order to obtain equation (176) one
would have to omit the first term in the rhs of, e.g. equation (174), but then the
locations of the origin of migration ((x — Ay, y — Ay, t), first term on the rhs
of equation 174) and reproduction ((x’, y’, t'), last term) would no longer be
different, as required for case (c¢). In this sense, we can say that the physical
origin of the term —1 in equation (175) is the migration of the parents (first
term in the rhs of equations (172)—(174)).
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In order to compare with the non-cohabitation model
in sections 2 and 3, it is necessary to establish the
connection between the low-density population number
growth parameters, namely rp (see equation (12)) in classical
models and R (see equation (176)) in cohabitation models.
This relationship can be obtained most easily as follows. In the
absence of dispersal, the classical model becomes the logistic
equation (237). For low values of p(x, y, 1), it yields

P(xvy’f"'T)ZP(x’y’t)eXP[”LT], (182)
whereas, also in the absence of dispersal, ¢ (A, A,) is a Dirac
delta centered at the origin and the cohabitation equation (176)
becomes

px,y,t+T) = Ryp(x,y,1), (183)

so that the reproduction function (175) and the logistic (12)
are consistent with each other at low values of the population
density, provided that

1
r, = TlnRo.

(184)

On the other hand, the reproduction function (175) and
the logistic (12) will give different results for high values of
the population density p(x, y, ). However, the high-density
behavior is not accurately known for biological populations
outside the laboratory, because there are no experimentally
well-established trends in the population numbers versus time
(except at low population densities) [52]. Moreover, the high-
p behavior of reproduction does not affect the speed of fronts,
as is obvious from both the sequential speed (180) and the
non-cohabitation one (17).

Although a comparison with the non-cohabitation model
does not seem possible for an arbitrary bias U,,'% it is possible
in the non-biased limit (U, = 0). For this purpose, using
equation (184) in (181) it is easily seen that the speed from the
cohabitation or sequential model (181) will be higher than that
from the classical model, equation (18), provided that

explr](exp[t] — D + 1/2)2 —7(exp[r]—1) >0,

(185)
where T = Trp, > 0. Plotting the left-hand-side for
T > 0, it is easily seen that this condition is always
fulfilled. The physical interpretation is that the classical

model corresponds to simultaneous dispersal and reproduction
(figure 14(a)). Intuitively, this should clearly lead to slower
invasion fronts than the sequential or cohabitation model
(figure 14(b)). This is the physical interpretation of the
fact that cohabitation models lead to faster front speeds than
classical ones.

8.3. European invasion of North America in the 19th century

In figure 18 we present the speeds predicted by the non-
cohabitation model (equation (17), lower curve, also shown

16 A comparison does not seem possible to us (in the unbiased case) because
we have been unable to find a mathematical derivation showing that the speed
(180), with Rp given by (184), is always higher than (17) for arbitrary values
of T, r, D and U,.
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Figure 18. Predicted speeds for the human invasion of the

United States in the 19th century, as a function of the random walk
bias B in the migration of individuals. The speeds shown are that
according to the non-cohabitation biased model, equation (17), and
to the cohabitation biased model, equation (180). The observed
speed range is shown as a hatched rectangle.

in figure 1) and the cohabitation model (equation (180),
upper curve) as a function of the random walk bias 8, see
equation (33).

In figure 18, the non-cohabitation model seems
compatible with the observed speed for high enough values
of B, whereas the cohabitation model does not. In principle,
we expected the cohabitation model to perform better than
the classical model for this application (because it involves
a biological population). But from figure 18, it appears
that it does not [12]. However, this may be too strong a
conclusion in view of the uncertainty of the values of the
parameters. We think that dispersion data in many directions
should be analyzed in order to estimate the mobility (D, ) and
bias (U,) parameters for this human population accurately, as
well as their error ranges and their dependence on position.
This would yield a non-homogeneous framework which, in
contrast to that in [59], would be free of some relatively
strong assumptions (e.g. the fractal nature of pathways, the
use of adjustable parameters, etc). Such a project would
certainly require very tedious work and discussions, which
we feel more appropriate for a specialized demography
publication. In this review, our aim is not to present an
in-depth analysis of the demographic data. Rather, the main
point is to show that cohabitation models can be useful to
describe such kinds of biophysical processes. Indeed, they
yield quite different speeds than classical models (figure 18).
We also think that this is an important lesson showing
that physical models cannot be applied straightforwardly to
systems of living individuals without taking proper care of
their biological features (e.g. sequential reproduction and
dispersion for trees; cohabitation of non-adults with adults for
humans; etc).

Figure 19. Neolithic front speed in 2D versus net population
reproductive rate. The numerical simulations lead to different
speeds in the horizontal or vertical directions (circles) than in the
diagonal directions (squares), but their average (triangles) agrees
with the CSRW. The DSRW results (x and + crosses) agree
perfectly with the corresponding simulations.

8.4. The Neolithic transition in Europe

Here we summarize some recent work on cohabitation
models beyond the CRD (or second-order) approximation
(equations (177)—(181)), and their application to the Neolithic
transition [16].

8.4.1. Continuous-space random walk (CSRW) model.  As
stressed above, the final cohabitation equation (176) is the same
as the sequential one (157). Therefore, equations (163)—(165)
can be applied. In order to perform the integrals in
equations (163)—(165), an expression for the kernel ¢(A) is
necessary. There are many possible choices of the kernel. For
the purposes of this section, it will be clearer to assume simply
that an individual will either remain at rest (with probability p,,
which is called the persistence in demography) or move a
distance r (with probability 1 — p,),
9(8) = pedV(A) + (1 = p)s(A — 1), (186)

where §(V(A — r) is the 1D Dirac delta centered at A = r.
Hence, this simple model assumes that all moving individuals
travel the same distance r. This makes it possible to find
relatively simple analytical results and to run relatively fast
random-walk simulations.

Performing the integrals in equations (163)—(165), an
explicit expression for the speed is obtained,
o In[Ro(pe + (1 — pe) Io(Ar))]

¢c =1m
>0 s

, (187)

where the minimization is relative to A, Io(Ar) is the modified
Bessel function of the first kind and order zero, given by
equation (165).

Figure 19 shows the speed predicted by the CSRW (full
line), equation (187), for the following values of T, Ry, p.
and r typical of human Neolithic populations. The generation
time is 7 = 1 generation = 32 yr (see equation (137)). The
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net reproductive rate Ry can be estimated from population
numbers versus time for two human populations that settled
in previously unpopulated areas [114]. What is impressive
in these data is that, when plotted against the elapsed time
in generations, both datasets yield almost exactly the same
curve of population number P(¢) (divided by its initial
value) versus time. From those data and equation (176)
integrated over the area available, we can estimate the value of
Ro= P(t+T)/P(t) for several values of t = T, 2T, 3T, ....
This yields an average of Ry = 2.2. The lowest value is
Ro = 1.9, and the highest one is Ry = 2.6. Thus, in figure 19
we compute front speeds for values of Ry in the range 1.6-3.0.
On the other hand, the population persistence p, (i.e. the
fraction of the population that does not move appreciably) can
be estimated directly from the mobility data in [97, p 139]
for three different populations of preindustrial agriculturalists.
The corresponding values of p, are 0.54, 0.40 and 0.19. In
figure 19, we use the mean value p, = 0.38 (the dependence
of the front speed of p, shall be analyzed later, in figure 21).
Finally, the value of r is estimated directly from that of the
persistence and the mean-squared displacement'”.

In figure 19, the front speed predicted by the CSRW
(full line), equation (187), is seen to increase with increasing
values of the population net reproductive rate R, as expected
intuitively. Before analyzing the implications for the Neolithic
transition and comparing with previous work, we first review
the use of numerical simulations in order to check the validity
of the result (187), which in turn relies on several assumptions
(as mentioned above).

8.4.2. Reactive random-walk simulations on grids. We
consider a 2D grid with 10°x10° nodes and initially
p(x,y,0) = 1 at the central node and 0 elsewhere. At each
time step (corresponding to 7 = 1 generation), we compute
the new population number density p(x, y, t + T) at all nodes
of the 2D grid as follows.

(1) First we compute the new local population density due to
reproduction at every node as Rop(x, y, t) if this result
is lower than pp,x (equation (176)) and ppn,x otherwise
(second line in equation (175)).

(i) Then we redistribute this result among all grid nodes
using the kernel (186), i.e. we consider that a fraction
p. of the population stays at the original node, and the
remaining fraction is distributed equally among the nearest
neighbors, i.e. a fraction (1 — p,.)/4 jumps a distance %r
along each horizontal or vertical direction.

In the horizontal/vertical directions, the speed obtained from
the simulations (circles in figure 19) is up to 5% higher than
that predicted by the CSRW (full line). But if we measure the
speed along a diagonal (45°) direction (squares in figure 19), it
is lower than the CSRW. The average of both results (triangles)
agrees within about 2% with the analytical result from the

17 The value of r is computed so that the mean-squared displacement yields the
observed value (namely 1544km? [4]),i.e. (1 — p,)r? = (A%) = 1544 km>.
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Figure 20. Jump of individuals (or particles) for the square lattice in
the simulations and the kernel (186), from an initial point P.
Continuous arrows correspond to the first generation, whereas
dotted arrows correspond to the second generation.

CSRW (full line)'®. Why does the speed from the random-
walk simulations depend on the direction? Because unlike
the CSRW, they are not isotropic (motion is only allowed in
the horizontal and vertical directions). As shown in figure 20,
after two generations (dashed arrows), the dispersal distance
along the diagonal direction (r+/2) is lower than that in the
horizontal direction (2r). This is the intuitive reason why
the simulation speeds in the diagonal directions (squares in
figure 20) are lower than in the horizontal/vertical directions
(circles in figure 20). An analytical approach to this problem
is reviewed in the following section.

8.4.3.  Discrete-space random walks (DSRWs).  Here
we summarize a discrete-space model (similar to that in
section 7.2.3 but for the kernel (186)) that is useful in order
to test direction-dependent speeds observed in the simulations
above [16].

First choose the X- and Y-axes shown in figure 20. Then,
for the kernel (186), particles can jump into point (x, y) from
points (x £ r, y) and (x, y & r). Therefore, equation (176)
becomes

px,y,1+T)=Ro{pep(x,y,0)+(1 = p) 5 p(x —r,y,1)
1 1 1
+Zp(x+r1y9t)+Zp(xvy_rst)'*_zp(-xsy+rat)]}'
(188)
As in section 2.3, we look for solutions with the form p =

Ppoexp[—A(x — ct)] and assume that the minimum speed is the
one of the front. In this way we obtain the speed

[ )

where the minimization is relative to A. This equation has no
analytical solution. However, for given values of Ry, p., r
and 7 itis easy to find its minimum numerically. In this way we
obtain the x-crosses in figure 19. They agree almost perfectly

e +1 1—p,
P +Tpcosh(kr)

. (189)

¢ = min

2>0 AT

8 One could estimate the speed in other directions. However, such
substantially more tedious work is unnecessary because of the satisfactory
agreement between the CSRW (full line in figure 19) and the mean of the
simulations (triangles).
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with the horizontal/vertical-direction simulations, performed
in the previous section (circles in figure 19).

Now we choose X’-and Y'-axes shown in figure 20. Then,
for the same kernel, it is easily seen that particles can jump into
point (x’, y") from points (x'+ %, y+ %). Therefore, instead
of equation (188) we have

px, Yy, t+T) = Ro{pep(x’, .0+ - pe)

Lol o 5
+lp<x’+L,y’—L,t>
4 2 2
1 , r ., r
+Zp(x ——2,y +—2,t>
1 , ro, r
(== 7)) .
which leads us, in the same way, to the speed
InfR +(1 - cosh AL>>:|
¢ = min [0<p€ tor <ﬁ , (191)

A>0 AT

instead of (189). This speed, shown as crosses (+)
in figure 19, agrees perfectly with the diagonal-direction
simulations (squares in figure 19).

The agreement between the DSRW model and the
simulations (figure 19) confirms the validity of the simulations
on grids reviewed in the previous section, as well as the
direction dependence of the front speed on discrete spaces for
the kernel (186).

8.4.4. Propagation speed of the Neolithic transition. The
front speed predicted from the second-order non-cohabitation
(HRD) approximation (20) and logistic population number
growth (12) is given by equation (18),

2\/ VLD

Sk Al iy (192)
1+r.T)/2

CHRD =

where D is given by equation (19). The prediction from
equation (192) is shown in figure 19 as a dashed curve (HRD).
It is seen that this second-order (HRD) approximation (which
was derived and used in [4]) is not reliable, since its predicted
speed is up to 31% less than that of the CSRW developed
and tested above'®. This shows very clearly the limitations
of the HRD equation in [4], even for the very simple kernel
considered (namely, that in which all moving individuals jump
the same distance). We stress that we have chosen this kernel
because we wanted to review the limitations of the approach

19 Note that the generation time in [4] was estimated as 7 = 25 yr, directly
from [95]. But in section 6.2 in this review it has been noted that the value
T = 25 yr is essentially the mean age difference between parents and their
oldest son or daughter (not the mean among all of them), so that a more
precise estimation is 7 = 32yr. This is why the HRD curve in figure 19
in the present paper for the value 1. = 0.03 yr—!, considered in [4] (i.e. for
Ro = exp[rLT] = 2.61, see equation (184)), yields a slower front than that
in [4] (0.81 versus 0.99 km yr_] ).
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in [4] for a single, the simplest possible case. Clearly, in
future work it would be interesting to extend these methods
(CSRW, random-walk simulations on grids and DSRW5s) to a
variety of kernels appropriate for preindustrial agriculturalist
societies.

Previous work [4] did not consider explicitly that some
individuals or particles can remain at rest. Instead, all
information about the dispersal kernel was ‘averaged’ into
a single parameter, namely the diffusion coefficient (19).
Therefore, those models did not make it possible to analyze the
effect of persistence on the predicted speed””. In contrast,
the approaches reviewed above make this possible [16]. In
figure 21, we compare the CSRW and simulation results for a
range of values of the persistence consistent with the observed
intergenerational mobility data of preindustrial farmers (see
section 8.4.1 above).

Originally the speed of the Neolithic transition in Europe
was estimated as 0.8-1.2kmyr~!, using a dataset of only
53 archaeological sites [115]. Over the years, a much
larger dataset has become available. Very recently, the
95%-confidence level speed was estimated as 0.6—1.3 km yr~!
using a dataset of 735 sites [96]. The speeds predicted
by the cohabitation, more accurate model (full curves
in figures 19 and 21) are consistent with this observed
range.

The reason why the speed increases with increasing values
of the persistence p, (figure 21) is that, for a given value of
the diffusion coefficient (19), a higher value of the persistence
implies that some individuals or families move larger distances
per generation—so the reaction front moves faster, due to these
long-range migration events.

Figure 21 also shows that, over a wide range of
persistence values, there is again good agreement between the
CSRW model (full curves) and the random-walk simulations
(triangles), for three different values of the net reproductive
rate Ry.

Finally, the second-order approximation to the CSRW
result is given by equation (181),

2R,D

CCRD = 1 .
T|14+——
2(Ry— 1)

This may be called the cohabitation reaction—diffusion
(CRD) speed, and is included in figures 19 and 21
(dashed—dotted curves). It is a good approximation
to the exact cohabitation speed (CSRW, full curves in
figures 19 and 21).

(193)

20 In this review we assume a fixed value for the diffusion coefficient D =
(A%)/(4T), namely that obtained from the values of (A?) and T implied by the
observed dispersion data (for a given persistence p,, the value of r is obtained
from (1 — p,)r? = (A%)'7). An alternative would be to analyze the effect of
pe on D or (A% = (1 — pe)rz, but then we would have to assume a fixed
value for r instead (for example, the mean displacement (A) implied by the
observed dispersion data). But we think that the value of D or (A?) is more
likely to be similar for different human populations, rather than the value of
(A) (because the former is more useful than the latter to describe dispersal
data at least in some situations, i.e. those in which the diffusion approximation
is valid).
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Figure 21. The effect of dispersion persistence on the speed of
the Neolithic transition. As in figure 19, the CRD equation is seen
to be a better approximation than the HRD equation (which was
used in [4]).

As in figure 19, we see from figure 21 that the HRD

approximation (which was used in [4]) largely underestimates
the results from the exact, cohabitation model. Differences
between the cohabitation model and the HRD equation [4] are
as large as 70% (see figure 21). This percentage is important,
and enough to be measurable, because it is twice as large as
the uncertainty in the observed speed of the Neolithic front.
Cohabitation models are therefore relevant. Moreover, their
interest is not restricted to the Neolithic transition, because they
can be applied to other human range expansions, biological
invasions, the spread of epidemics and plagues, cultural
fronts, etc.
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8.5. Several-population models

Interaction effects between several species or population
types lead to important changes in the dynamics of
physical, chemical and biophysical systems [1, 95]. In
this section we review recent work on such effects for
integro-difference evolution equations [25]. For definiteness
we shall discuss them in the context of the Neolithic
transition.

8.5.1. Continuous-space random walk (CSRW) model. Let
pn(x, y,t) stand for the population number density of the
Neolithic population, per unit area centered at position (x, y)
and time . The dispersal kernel ¢n (A, Ay) is the probability
per unit area that an individual who was at (x — A, y — Ay, 1)
jumps to (x, y,t+ T) and T is the time interval between two
subsequent jumps (7 = 1 generation 2~ 32 yr, see section 6.2).
Let Rx[pn(x, y, )] stand for the net effect of reproduction
(births minus deaths) of the Neolithic population during the
time interval 7 . The cohabitation evolution equation (176) is
generalized into

+00 400
PN(X,y,f+T)=R0Nf / PN — Ay, y — Ay, 1)
—00 J —0

X ¢N(AX7 Ay) dAx dA)

+00 p+00
+I / / pN(x_Ax7y_Ayvt)
—00 J —00

X PP(X - Ax» y = Aya t)(pN(Ax» Av) dAx dAy’ (194)
where the last term corresponds to the interaction (with
strength I') of the invading Neolithic humans with the
indigenous Paleolithics. The latter have number density
pp(x, y,t), driven by an analogous equation,

+00 p+00
pr(x,y,t+T) =R0P/ / pp(x — Ay, y — Ay 1)
—0Q —0Q

X ¢p(Ay, Ay)dA, dA,

+00 +00
-r / / PN(X—Ax,y—AyJ)
—00 J —00

xpp(x — Ay, y — Ay, )Pp(Ly, Ay)dAdA,.  (195)
The interaction (last term in both equations) leads to an increase
in the population density of species N and a decrease in that
of P (so we may represent this process as N+P — N+N). This
effect is observed in anthropology and may be due to a variety
of causes, such as interbreeding or acculturation [95]. In any
case, (i) parents will not migrate away from their newborn
children (cohabitation), so that it is more appropriate to use an
integral over the dispersal kernel also for the interaction term;
(ii) the number of new N individuals at (x — Ay, y — Ay, 1)
equals the number of P individuals disappearing at the
same space-time point, namely I' pn(x — A,y — Ay, 1)
pp(x — Ay, y — Ay, 1),
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For later use, we rewrite the previous set as

pN(x, 1+ T)

+00 p+00
=R0N/ / [(1+y pp(x — Ay, y — Ay, 1)]
—00 J —00

X PN — Ax, ¥y — Ay, DON(A, Ay)dALdA,,  (196)
pp(x,y,t+T)
+0o0 +00 R
- ROP[ / [1 LN = By - A_v,r)}
—00 J —00 ROP
X PP(X - AX7 y = Ay’ t)¢P(AX7 Ay) dAx dAw (197)
where
I (198)
V=5 —
Ron

We assume that the invasion front of the population N
spreads in a region where the density of the indigenous one
P is initially equal to its maximum possible value, pmax p-
This is appropriate for the Neolithic transition (i.e. the invasion
of Neolithic farmers N into a space populated by indigenous
Paleolithic hunter-gatherers P) [95]. Thus, in the leading edge
of the invasion front we may write

pPNx, v, ) ~e(x,y, 1)+ 0(2),

(199)
pP(xa Y, t) = Pmax P — 8()C, Y, t) + 0(2)7
where O (2) stands for second and higher-order terms,
e(x,y,1) K Pmax N (200)
and
(S(.x, y,t) << pmax P- (201)

Therefore, up to first order we have for the interaction term

Y pN(-xs y, t) pP(xa Y, t) = ypN(-xs y, t) Pmax P + 0(2)
(202)

Such an approach has been applied to several sets of evolution

equations [24,25, 116]. It is useful here because it reduces

equation (196) to an evolution equation in which only the
variable px(x, y, t) appears,

pn(x, y,t+T)
+00 +00
>~ Ron (1 +¥ Pmax P)/ / PN(Xx — Ay, y — Ay 1)
—0Q —0Q0

X pn(Dy, Ay)dA, dA,. (203)

The front speed of the invading species (farmers in the
case of the Neolithic transition) can be found most easily as in
section 2.3, i.e. by assuming that px = pg exp[—A(x —ct)] as
x — ct — oo. For an isotropic kernel ¢n(A), we obtain from
equation (203)

exp[cTA]l = Ro (1 +y Pmax p)

oo 2
x/ dAAqu(A)/ do exp[—XAcosf], (204)
0 0
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Figure 22. Predicted speeds as a function of the interaction
parameter y between the invading species N (farmers) and the
indigenous species P (hunter-gatherers). They are seen to be
consistent with the observed speed of the Neolithic transition in
Europe, namely 0.6 < ¢ < 1.3kmyr™! [96].

where 6 tan~! (A y/Ay). As in the previous section, we
are interested in the simplest possible kernel such that we can
derive analytical formulae, so we again assume equation (186),

on(D) = gp(D) = pSV(A) + (1 — p)sV (A — 1),
(205)

where the kernel per unit length ¢(A) is related to that per
unit area ¢ (A) according to equation (160). In fact, there
are some small differences between the observed dispersal
kernels of preindustrial farmers, ¢n(A), and hunter-gatherers,
op(A), but these differences are small [37]. Therefore, we
assume simply ¢n(A) =~ ¢p(A) in equation (205). This will
avoid substantially more complicated simulations and analyses
(which we do not expect to change the results appreciably).

After integrating equation (204), we assume as usual that
the minimum speed is the one of the front (in the following
section, we will check this assumption by means of numerical
simulations of the two-species system (196)—(197)). In this
way we obtain the front speed

. In[Rox (1 + ¥ pmax p)(pe + (1 — pe)Io(Ar))]
¢ = min :

A>0 s
(206)

where Iy(Ar) is the modified Bessel function of the first kind
and order zero, given by equation (165). For the case in which
a single species invades the habitat without interaction (y =0
or pmax p = 0), we recover the single-species result (187).

In figure 22, we show the speed predicted by the CSRW
(full line) for parameter values appropriate for the Neolithic
transition (T 32yr, Rpp = 1.8/gen, p. = 0.38 and
Pmax p = 0.064km~2) [25]. In figure 22, the front speed
predicted by the CSRW (full line), equation (206), is seen to
increase with increasing values of the interaction parameter
y, as expected intuitively because the higher its value, the
more hunter-gatherers become farmers per generation (see, e.g.
equation (203)).
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8.5.2. Cohabitation reaction—diffusion (CRD) approximation.
Equation (206) is not easy to apply in practice because
it requires plotting a function and/or finding its minimum
numerically for each set of parameter values. Therefore,
here we derive a simpler approximation. We approximate
equation (203) by using Taylor expansions in space and time
up to second order (assuming again an isotropic kernel),

apn | T?9%px
+ T —+ — >~ Ron (1 + ¥ Pmax
PN 9 > o2 oN (I + ¥ Pmax P)PN
92 92
+ Rox(1+ ypmax p)DT ( S0 4 S20) (207)
dx2 dy?

where D is given by equation (19). The speed of this CRD
equation may be derived, again, by assuming solutions with
the form

P == poexp[—A(x — ct)] (208)
with A > 0. This yields
A= (Tc + [(ch — 4(Ron(1 + ¥Pmax p) — 1)
T2c2 3
X (Ron (1 + ¥ Pmax P)DT — > )] )
/ (2Rox (1 + Y Pmax p)DT — T?c?). (209)

Requiring X to be real and assuming that the minimum
2RON(l + ¥ Pmax P)D
1

speed is that of the front, we obtain the speed
CCRD = .
T (1 + )
2(RON (1 + ¥ Pmax P) - 1)

In figure 22 we have also included this speed (dotted
curves). Itis seen to be a useful approximation, and it is much
simpler to use than the exact result (206). The approximate
result (210) has also been applied to estimate the coexistence
time between the invading and the invaded populations [25].
For the special case in which a single species invades the habitat

without interaction (y = 0 or pmax p = 0), we recover the
single-species result (193).

(210)

8.5.3. Reactive random-walk simulations on grids. We
consider a 2D lattice with 10° x 10° nodes. Initially the
invading population (N) is restricted to the central node of
the grid (where pn(x, ¥,0) = pmax N), and pn(x,y,0) =0
elsewhere. For the indigenous population (P), initially
pp(x,y,0) = pmax p €verywhere.

At each time step (corresponding to 7 = 1 generation =
32yr), we compute the new population number densities
pN(x,y,t + T) and pp(x,y,t + T) at all nodes of the 2D
lattice as follows.

(1) First, according to the factor [1 + ypp]lpn in
equation (196), at every node we add to the pn
the term ypnpp. And according to the factor
[1 - ”152‘:“ pN]pp in equation (197), we subtract to pp
the term (y Ron/Rop) PNPp, unless a negative value for
pp is obtained. In the latter case we set pp = 0 (local
extinction of the invaded population).
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(ii) Second, the dispersion of the population densities
obtained in step (i) are performed using kernel (205).
Thus, a fraction p, = 0.38 of each population (N and P)
stays at the original node, and the remaining fraction
is distributed equally among the nearest neighbors,
ie. a fraction (1 — p.)/4 jumps a distance =+£r
along each horizontal or vertical direction. In the
analytical model, this corresponds to the integrations in
equations (196)—(197).

(iii) Finally, we compute pn(x,y,t + T) by multiplying
pn(x, v, t) (obtained from step (ii)) by the factor Ryy (see
equation (196)), unless a value pN > pPmax N 1S Obtained.
In the latter case we set px = pmax N (to avoid biologically
unrealistic population densities over the saturation value
implied by the environment). Analogously, pp(x, y, t+7)
is computed as Rop times the value of pp(x, y, ¢) from step
(ii) (unless a value pp > pmax p is obtained; in such a case
we again set pp = Pax P)-

For the net reproductive rate of hunter-gatherers, we use
the characteristic value Rop = 1.8.2! Saturation population
densities for preindustrial farmers and hunter-gatherers have
been measured for several populations. In figure 22 we use the
same values as those applied by Currat and Excofier [117] in
their genetic simulations of the Neolithic transition, namely
Pmax N = 1.28farmerskm™2 and pma p = 0.064 hunter-
gatherers km™2.

We repeat this three-step cycle many times, until we
observe that the front speed is constant (this happens before
500 cycles or generations).

Along the horizontal/vertical directions of the lattice, the
speed obtained from the simulations (circles in figure 22) is
faster than that measured along the diagonal directions (+45°
relative to the horizontal axis) (squares). This is similar to
figure 19, and again due to the reason explained in figure 20.
The average of both speeds from the simulations (triangles
in figure 22) agrees with the CSRW (full curves). We could
try to attain better agreement by computing the simulated
speeds along many other directions. Although the validity
of the analytical result is clear from figure 22 (curves versus
triangles), one expects such calculations to further improve the
agreement between the model and the simulations.

The small differences are not unexpected after all, because
on a continuous surface jumps take place into all infinite points
of a circle (CSRW model) but in simulations they necessarily
take place into the nodes of a square (i.e. on a discrete surface).
This also explains the asymptotic behavior of the diagonal
simulations (squares) for Roy = 3.0 in figure 2222, We check
these simulation results analytically in the following section.

2L Rop = exp[rLpT] from equation (184) and we use the mean value rip =
0.022 yr~! from [37].

22 The fastest possible front speed along the horizontal or vertical directions
of the square lattice will obviously be r/T = 50km/32yr = 1.56kmyr~!
(recall that r is the distance between two nearest nodes, and T the time
between two successive jumps). This limit should be obtained for sufficiently
high values of Ron, so that the front propagation becomes diffusion limited.
Similarly, the fastest possible front speed along the diagonal directions of
the square lattice will obviously be r/2/(2T) =~ 50km/(+~/232yr) =
1.10kmyr~!, which agrees with the asymptotic behavior of the diagonal
results (squares and + crosses) observed in figure 22 for Ron = 3.0.
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8.5.4. Discrete-space random walks (DSRWs).  For a grid
in 2D space and kernel (205), individuals can jump into point
(x, y) from points (x = r, y) and (x, y £ r). Therefore, in
discrete space equation (203) is replaced by

pn(x, vy, t+T) = Ron(1 + ¥ Pmax P)

X {pe PN, y, 1)+ (1 = p)l3px —r, y, 1)

—r, 1)+ ip(x, y+r )]}
(211)

+%p(x+r,y,t)+%p(x,y

As in section 2.3, we look for solutions with the form
p = poexp[—A(x — ct)] and assume that the minimum speed
is the one of the front. In this way we come to the speed

In |:R()N(1 + ¥ Pmax P) (pe+

AT

—Pe [cosh(Ar)+ 1]) ]

c=min
>0

212)

This equation has no analytical solution. However, for
given values of Ry, p., r, T and y it is easy to find its
minimum numerically. In this way we obtain the x-crosses
in figure 22. They agree perfectly with the horizontal/vertical-
direction random-walk simulations, performed in the previous
section (circles in figure 22).

Now we choose X’ and Y’ forming 45° with the X- and
Y axes (see figure 20). Then, individuals jump into point
(x’,y") from points (x' + \/LE == %) so, instead of
equation (211) we have

px',y, t+T) =

X pep<X’, v+ — pe>

Ro(1 + ¥ Pmax p)

1 , T , r
+4—1p<x +—2,y ﬁ’t>
1 , r r
*zp(x RV R f)
1 ;T r

which leads us, in the same way, to the speed

7))

In [Ro(lﬂ/Pmax P) (pe+(1 — pe)cosh (AE

c=min ,

>0 AT
(214)

instead of (212). This speed is shown as crosses (+) in figure 22.
It agrees perfectly with the diagonal-direction simulations
(squares in figure 22).

8.5.5. Effect of the interaction on the front propagation speed.
Both the analytical results and the simulations (figure 22) are
seen to be consistent with the observed speed of the Neolithic
transition in Europe, namely 0.6 < ¢ < 1.3kmyr™! [96],
provided that the interaction parameter y is low enough, e.g.
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y < 5km?for Rox = 3.0. Such a high value for Ry is usually
regarded as the highest possible net reproduction rate for
preindustrial agriculturalists, and it is considered reasonable
for Neolithic range expansions>*. In principle, however, lower
values could apply to regions less favorable for agriculture

(e.g. Ron = 1.6, which is the lowest value consistent with
the population number series in [114], so we also include it in
figure 22).

The interaction parameter y determines the strength of
the interaction between the two species (or populations, in the
case of the Neolithic transition). This parameter is important
to predict the range expansion speed (figure 22). It is also of
crucial importance in models of the geographic distribution of
genes after a range expansion [117]. Computer simulations
of equations (196) and (197) and analytical formulae have
recently shown that the values of y used in figure 22 are in
reasonable agreement with the values of the coexistence time
between the Neolithic and Paleolithic populations, as estimated
from archaeological observations [25]. This line of research
opens the way toward regional analyses in which: (i) observed
geographic differences in the coexistence times [117] could be
used to estimate non-homogeneous values for the interaction
parameter y and therefore for the front speed (figure 22);
(ii) regions less suitable for agriculture may correspond to
lower values for Rgy and thus have a slower front speed
(figure 22), which is consistent with the empirical observation
that the Neolithic front slowed down as it approached colder
regions in Northern Europe [118].

9. Conclusions and perspectives

We have presented microscopic, macroscopic and age-
structured derivations of reaction—dispersion and reaction—
diffusion equations arising from biased random walks,
distributed delays, sequential models, dispersive variability,
etc. For all cases, we have derived formulae for the speeds
of their front solutions. Applications here surveyed include
diffusive and convective effects on the front propagation speed
of combustion flames, Reid’s paradox of rapid forest spread,
the colonization of North America in the 19th century, the
Neolithic transition in Europe, the spread of genetic mutations,
subsistence and cultural boundaries, virus infections, cancer
tumors and anomalous transport, etc.

Several approaches have been reviewed and compared
for some relevant cases, including the use of Fourier—
Laplace transforms for distributed delays, continuous-space
and discrete-space random-walk models (CSRW and DSRWs,
respectively), reactive random-walk simulations on two-
dimensional grids, etc.

For combustion flames (section 5), research results
published during the last five years have made it possible to
reduce a system of coupled equations to a single equation
for a reduced temperature variable, which in turn has made
it possible to derive lower and upper bounds on the flame

23 From equation (184), rin = (In Ron)/T yields the estimations rpn =
0.034yr~! for Rox = 3.0 and rixy = 0.015yr~! for Roy = 1.6. This
includes the range estimated from fits to equation (238) or (240) in [4,96],
namely 0.029 < rin < 0.035 yr‘1 or 2.53 < Ron < 3.06.
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front speed. This framework has been extended to include
mass diffusion, convective effects and temperature-dependent
transport coefficients (figures 5-9).

For distributed delays (section 6), a reduced hyperbolic
reaction—diffusion equation (130) and an effective delay time
(132) have been derived and applied to the Neolithic transition
(figure 11) and to virus infections (figures 12 and 13).

Sequential models (section 7) take into account the fact
that dispersal and biological reproduction are not simultaneous
(figure 14). In recent years, work on such models in two-
dimensional spaces has provided a possible solution to Reid’s
paradox of rapid forest range expansion (figures 15 and 16).

Cohabitation models have the same mathematical form as
sequential models, but in contrast to the latter, they do not imply
any specific order between dispersal and reproduction. They
do take into account that newborn humans have to spend some
time with their parents until they can survive on their own.
This effect is important when computing human population
front speeds (figures 19 and 21).

The models and formulae here reviewed can be useful in a
lot of applications. Many possible lines of future research have
been proposed in several sections of this review. Moreover,
biased front models can be useful for a variety of physical
and biophysical applications dealing with biased fronts, such
as particle diffusion in disordered lattices [47], nucleation of
spiral waves [14], human and non-human population invasions
[100], the spread of epidemics [119] and cultural fronts [38].

The 2D sequential model of non-overlapping generations
(section 7.1) could be extended to allow for overlapping
generations, and applied to Reid’s paradox (section 7.2).

Another field of future research should be the use of
cohabitation models (section 8) with a variety of dispersal
kernels, as appropriate for specific applications.

The two-species model reviewed in the last section could
be applied to competition systems (in which both species have
a detrimental effect on the other one).

An additional, especially promising field of research on
reaction—diffusion fronts is that of microorganisms, because
in such systems experiments can be easily replicated and the
parameter values are simpler to estimate [5].

We close this review by stressing that for purely physical
applications [14,47] (not involving biological reproduction),
non-sequential models (sections 2-5) are more appropriate.
For biophysical ones [100, 119], distributed delay (section 6),
sequential (section 7) and cohabitation models (section 8) seem
more reasonable (depending on the features of the underlying
random walks and reproductive processes).
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Appendix A. Age-structured derivation of
non-sequential models

Here we present a more detailed derivation of the model
in sections 2.1 and 2.2, by taking the possibility of age-
dependent mortality and natality into account. Using recent
results by Vlad and Ross [17], the classical approach by
Othmer et al [ 120] has been generalized to include reproductive
processes which may depend on the age structure of the
population [16].

Appendix A.1. Age-structured derivation of equations (1), (3)
and logistic growth (12)

Let ¥(a, x, y, t) stand for the number density (per unit area)
of individuals aged a that reach an area centered at point (x, y)
at time ¢. The total number of individuals P (x, y, t) reaching
the same location at 7 is

Puer5/ dax(a,x, v, 1). (215)
0

Let p(a, x, y,t) stand for the number density (per unit
area) of individuals aged a at point (x, y) at time ¢. The total
number of individuals p(x, y, t) at the same location at ¢ is

pm»o=/ dap(a, x, v, 1), 216)
0

These definitions imply the following evolution equations for
Y(a,x,y,t)and p(a, x,y,t)

E(a7-xa yat)

t +00 +00
/ dT(p(T)/ / dAcdAY(a—T,x — Ay,
0 —00 J —00

Xy =Dy, 1 = T)P(Ax, Ay) + po(a)d(x)S(y)d (1)

+5(a)/ da'r@)p(d’, x,y,1) — pol@)p(a, x, y, 1)
0

—mip(x,y, 1) pla, x,y,1), 217

t
pa,x,y,t) :/ dt'2(a, x, y, W@ —t'), (218)

0
where, as in section 2.1, the dispersal kernel ¢(A,, Ay) is
the probability per unit area that a particle (or individual)
who was at (x — Ay, y — Ay, t) jumps to (x, y, ¢+ T). The
distribution ¢(7T') is the probability that it rests for a time
between T and T + dT before performing the next jump,
divided by dT. The term pg(a)d(x)8(y)3(t) corresponds to
assuming that initially the density of individuals aged a is
po(a) at the origin, and it vanishes elsewhere. A(a) and
Ko(a) are the age-dependent natality and mortality rates per
individual, respectively. Finally, | is an additional mortality
term which avoids an unbounded growth of the population
density, as shown below (additional, higher-order terms could
be included, but are not necessary for our purposes). Note that,
in contrast to the death terms (last two terms in equation (217)),
the birth term is an integral over age a involving the natality
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rate A(a), because individuals of different ages may reproduce,
i.e. contribute to the population with 0-aged individuals (thus
the factor §(a) within this term). In equation (218) we
have introduced the probability that a particle (or individual)
rests for at least a time interval 1 — ¢’ before performing the
next jump,

00 ’

\p(t—ﬂ)zf dT(p(T):l—/i dTo(T),
t—t' 0

so that equation (218) simply states that the particles at (x, y, t)
are those that have arrived at some earlier time and still not left.

(219)

Integrating equation (218) over age a yields

plx, vy, 1) = / dt' P(x,y, )W ( —1t). (220)
0

Vlad [17, 121, 122] has shown that, after a transient
of a few generations, the age structure of the population
reaches a stationary distribution ¢y (a) which is also uniform
in space, i.e.

p(a’-xv yvt)zp(xv y,t)Cst(a)- (221)
The following parameter, introduced by Lotka [123],
o0
"= f dali(a) - po(@lex(@  (222)
0

is called the intrinsic or initial growth rate of the population
number density (the reason for these names will become clear
at the end of this appendix).

Although this is not necessary for the purposes of the
present review, Vlad [17,121, 122] has also shown that ¢y (a)
is given by Lotka’s distribution [123],

e MLaa— j(;l da’ juo(a’)

s = 7 , 223
C‘t(a) fooo da e—"Lae— Jo da’po(a’) ( )
so that ry satisfies Lotka’s transcendental equation
e a ’ ’
f da A(a)e e o da'mo@) — 1 (224)
0
Integration of equation (217) over age leads to
t +00 p+00
P(x,y,1) =/ dTgo(T)/ / dA,dA,
0 —00 J—00
X P()C - A)n y - Aya t— T)¢(Axv Ay)
+pod(X)3(Y)8(1) +rLp(x, y, 1) — mip(x, y, 1), (225)
where pg = [; dapp(a) and we have used

equations (221) and (222).
In order to solve equation (225), we introduce the
Fourier-Laplace transforms of the corresponding space-time
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fields [124, 125],

A~ o0 o0 o0 7o
P(ky, ky, s) :/ dx/ dy/ dre ®F TP (x, v, 1),
—00 —00 0

(226)
[e%s) (o] (o] -
ﬁ(kx,ky,s)zf dx/ dy/ dre F ¥ p(x, y, 1).
—00 —00 0
(227)
R o0
$(5) $lks. ky) = / dT e~ (T)
0
o0 o0 Lo -
X / dAx/ dAy e KA g (Ax, Ay). (228)
—0oQ —00

We now Fourier-Laplace transform the equation (225)
(see e.g. [124], formulae (F.5b,k) and (F.11g,n)),

Pky, ky,s) = Pky, ky, $)(ky, ky)G(s)

+po+ F(ke, ky, ), (229)
where
Fke, ky, s) = roplhe, ky, s) — 11 p2 (e, ky,s). (230

Second, we Fourier-Laplace transform equation (220) (see
[125], formulae (32.13,25)),
A 1—0¢

Bk kyys) = Pl by )20 31
s
Combining the two latter equations we get rid of the field
P(ky, ky,s). Assuming a Dirac-delta distribution for ¢(7T),
we have

1 o I's"
—— =exp[sT]=1+%7, , (232)
@(s) n!
and we obtain
non—1
ZIC;O:I Vl' (Sﬁ(kx’ky’s) - PO)
= (@ ks, ky) — 11 (ks ky. 5)
non—I1
+272, Y Fky, ky,s). (233)
Antitransforming this equation yields
Tn 8np +00 +00
e =f f PO = Ay = By 1)
X @Ay, Ay)dAdA,
T" 9" 'F(x, y,1
Cp ez, DY FCY D (234)

n! o1
From equation (230) we obtained the so-called logistic growth
function,

F(x,y,t) =rLp(x, y,t) — p1p*(x, y,1). (235)
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Therefore, we reach the final result
+00 +00
p(x,y,t+T)—p(x,y,t)=/ / p(x_A)my_Ayvt)
—00 J —00

X P(Ay, Ay)dA, dA,
T" " 'F[p(x,y,1)]

n! o1
so that using equation (3), we obtain equation (1) with
R[p(x, y, )] given by (3) and F given by (235) or (12). This
completes the age-structured derivation of equation (1). The
advantages of the derivation presented in this section are (i) it
shows that the evolution equation (1) is valid for biologically
reasonable situations (in the sense that natality and mortality
rates may depend on age) and (ii) using equation (222), one
can compute the effect of age-dependent natality and mortality
rates on the evolution equation, and thus on the front speed (this
latter problem is analyzed in section 2.3).

—px,y, )+ X2, , (236)

Appendix A.2. Special cases

Note that in the absence of dispersal, the first and second terms
in the rhs of equations (234), (236) and (1) do not appear. Then,
either equation (234) or (1) leads to

ap(x,y, 1)

o (237)

= rLp(x, y, 1) — 1 pP(x, ¥, 1).
The solution of this equation is the well-known logistic
growth [51],

p(x,y,1)

a9
= — = Pmax,

L
— po(x, y)
MH1

L M
po(x, y) + W po(x,y) | exp[—rpt]" >
1
(238)
where po(x, y,) = p(x, y,t =0).
However, in the special case ©; = 0 equation (237) is
replaced by
Ipx, y, 1)
= rLp(x, y,1) (239)

and then the growth of the population (238) becomes
exponential,

— 0
POy, D) = polx, wexplrurl ” 2% L (240)

which leads to an unbounded growth of the population. This
is not observed in any real biophysical system. A widely used,
simple way to avoid this divergence is just to include the last
term (u; # 0) in equation (217)—so that equation (238) is
obtained instead of (240). Vlad [122] has noted that this term
(with characteristic parameter 1¢) can be viewed as describing
the interactions between the individuals and the environment
(in the sense that it sets a limit pp,ax for the population density,
equation (238)). Clearly, such a role is not played by the
terms in equation (217) with characteristic (age-dependent)
parameters A(a) and po(a). For this reason, rp given by

39

equation (222) is sometimes called the intrinsic growth rate
of the population. Assuming that po(x, y) < pmax, for low
enough values of p(x, y, t) and  equation (239) will be a good
approximation to the full logistic evolution equation (237).
This is why 71, is sometimes also called the initial growth rate
of the population number density p(x, y, t).

Appendix B. Age-structured derivation of sequential
models

In appendix A, the non-sequential evolution equation (1) has
been derived using mortality and natality instantaneous rates
(mo(a) and A(a), respectively). Recently, it has been shown
that instead of using rates per generation (iio(a) and X(a),
respectively), a simple derivation of the sequential evolution
equation (157) is possible [16]. To see this, we begin by
noting that we can clearly consider the following sequential
equation:

pa+T,x,y,t+T)—p(a,x,y,t)

+00 +00
:+/ / dAdiyp(av-x_Ax’y_Ayvt)d)(Ax»Ay)
—00 J—00

+00 p+00
_p(a5xay’t)_/ / dAdiyllO(a)

Xpa,x =20,y =28y, 0)9 (A, Ay). (241)

Note that in the last term, the mortality and the dispersal effects
are applied sequentially (because the integral and the dispersal
kernel are included). Integrating this equation over age (@ = 0
to a = o0) and defining ¢’ = a + T we obtain

T
px,y,t+T)— / dd'p@,x,y,t+T) — p(x,y,t)
0

+00 +00
=+ [ [ Casianpe- a0y - 808, 8)
—0oQ —0oQ

oty [ daiota [ [ " asian,
0 —00 J —00

Xp(avx_Axvy_Ay,t)d)(Avay)~ (242)

The second term corresponds obviously to individuals with
ages between 0 and 7', i.e. born between ¢ and ¢ + 7', namely

o0 +00 +00 -
/ da / / A, dA, A (a)
0 —00 J —00

Xp(aﬂx_Axvy_Ayat)(p(Avay)? (243)

because 7 is 1 generation and A(a) is the birth rate per
generation. Again, the natality and the dispersal effects
are applied sequentially (i.e. the integral and the dispersal
kernel appear). Using also equation (221) leads us finally to
equation (157), where we have defined Ry as

Ro—1= / dali(a) — fo(@)leq(@). (244)
0

It is interesting to note that the condition Ry > 1, which

Weinberger [108] showed is necessary for the population

not to extinguish and front solutions to equation (157) to
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exist, corresponds to the effect of natality being stronger than
that of mortality, which makes biological sense.

Finally, let us mention that it is possible to add a quadratic
term, e.g.

+00 +00
_:al/ / dAdiyp(x_Ax’y_Ayat)(p(Ax’Ay)
—00 J —00

+00 p+00
X / / dA,dAypla, x — Ay, y — Ay, 1)
—00 J —00 ’ i

X P(Ay, Ay), (245)

to equation (241), which yields a logistic discrete-time
reproduction function, i.e. an additional term

+00  p+00 2
_ﬁl[/ / dAdiyp(x_Axay_Ay’t)¢(AXsAy):|
(246)

to equation (244). However, the speed of fronts would be
the same and, more importantly, such a logistic discrete-
time reproduction function is known from non-spatial models
to yield negative population densities [55], which makes no
physical sense (numerical simulations show that the same
happens for spatial models [16]). This is the reason why, as
we review in section 7.2, equation (157) has been recently
applied together with the simple assumption of a vanishing net
reproduction above saturation density.
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