29 June 2001

CHEMICAL

! PHYSICS
. LETTERS
ELSEVIER Chemical Physics Letters 341 (2001) 585-593

www.elsevier.nl/locate/cplett

Nonequilibrium effects on the rate of bimolecular
chemical reaction in a dilute gas

A.S. Cukrowski **, S. Fritzsche ¢, J. Fort 4

& Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44152, 01-224 Warsaw, Poland
® Faculty of Mathematical and Natural Sciences, Institute of Chemistry, Pedagogical University, ul. Checinska 5, 25-020 Kielce, Poland
¢ Faculty of Physics and Geosciences, Institute of Theoretical Physics, Leipzig University, Augustusplatz 9-11, D-04109 Leipzig, Germany
d Departament de Fisica, Campus de Montilivi, Universitat de Girona, 17071 Girona, Catalonia, Spain

Received 16 June 2000; in final form 24 April 2001

Abstract

The perturbation solution of the Boltzmann equation in a dilute gas shows that the rate constant of chemical re-
action A + A 2 B+ B is diminished due to nonequilibrium effects. For the line-of-centers model, the relative decrease
n of the reaction rate can reach even nearly 45% (for a small reduced threshold energy ¢* and a large molar fraction xg).
For slow reactions this method is valid and 1 does not depend on xg. The appropriate equilibrium expressions for
reaction rate (with: (a) the temperature of the system 7, (b) the nonequilibrium Shizgal-Karplus temperatures 7x and
Tg) are used for this analysis. © 2001 Elsevier Science B.V. All rights reserved.

1. Introduction s N
UAf = KAfiANg = T
Prigogine and Xhrouet [1] were the first to show _ .
that when in a gaseous system the bimolecular - fafpogdQdendes, (2)

chemical reaction

where the subscript f denotes the forward reaction,
A+B =2 C+D (1)

na and ny are the number densities of the reagents,

proceeds, the nonequilibrium effects can diminish
its rate. Namely, the nonequilibrium rate wvar is
smaller than the equilibrium one vff) and also the
equilibrium rate constant kfff) is diminished to kas.
These quantities are defined as
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t is the time, f, and fp are the velocity distribution
functions of the colliding molecules, ¢* is the dif-
ferential reactive cross-section, Q is the solid angle,
whereas ca,cg and g are the velocities and the
relative velocity, respectively. In equilibrium
the appropriate vff) and k/(,?f) can be calculated after
the introduction of the Maxwell-Boltzmann ve-
locity distribution function

3/2 2
(0) mg MRCR
T)= —
S (T) nR<2nkBT> eXp( 2kBT>

(R = A,B), 3)
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where mgr denotes the molecular mass, kg and T
are the Boltzmann constant and temperature, re-
spectively. A very convenient quantity #,; > 0 can
be defined as

Nar=1-— UAf/UES?f)' 4)

The nonequilibrium velocity distribution functions
fa and f which are necessary for calculation of va¢
from Eq. (2) can be obtained from the solution of
the appropriate Boltzmann equation [2,3]. The
analysis of this problem has been developed by
many authors [4-17].

It is interesting that the model for the cross-
section ¢* plays an important role on the analytical
form of f, and f obtained from a solution of the
Boltzmann equation. The line-of-centers model
introduced by Present [4] is used very often. It is
defined as

0 g<g’
o= . N 5
{istz(l—gz/gﬂ) g>g ®)
where sg denotes the steric factor, d is the average
diameter of molecules treated as spheres, g* is the
characteristic relative velocity connected with the
threshold energy E*

E*=mg?/4, (6)

where m denotes the molecular mass. The thresh-
old energy E* is often represented in its reduced
dimensionless form

¢ = E*[kgT. (7)

The line-of-centers model has been used in many
papers [6-11,17-34]. Present [4] solved the Boltz-
mann equation for the one-component reactive
system A + A — products, where the products
were completely neglected. He employed the
Chapman-Enskog method of solution of the time-
dependent Boltzmann equation [2] as used in many
other papers [1,3-11,20,21,31]. This is what is re-
ferred to as the perturbation solution of the
Boltzmann equation and requires that the reactive
collision rate to be small relative to the elastic
collision rate restoring equilibrium. The validity of
the use of the Chapman—Enskog method was dis-
cussed by Shizgal [11,13] and Napier and Shizgal
[27]. There are two approximations within this
approach. The first is the use of the Chapman-—

Enskog method and the second is the solution of
the resulting steady equation with the expansion in
Sonine polynomials. Shizgal and Karplus [8] re-
ported on the rate of convergence of this expan-
sion. Pyun and Ross [5] extended this work to
multicomponent reactive systems. An important
aspect of their approach is that they have con-
strained the temperatures of each component to be
equal, in contrast to the work of Shizgal and
Karplus [9,10]. These later papers form the basis of
much of the work in this Letter and the previous
papers [19-24,29-33] in terms of the departure of
the temperatures of the different components from
a common temperature. We have referred to these
as the Shizgal-Karplus temperatures [21,25].

Recently, Shizgal and Napier [28] provided a
very detailed interpretation of the use of the
Shizgal-Karplus temperatures, and in particular
the important difference between the three systems,
re. (1) A+ A — products, (ii)) A + B — products,
and (iii) A + A — B+ B. Moreover, these reac-
tions can take place either as in isolated systems (a)
or as in isothermal systems (b), i.e., in the presence
of another component M in a large excess acting as
a constant thermal heat bath. For the systems (i)
and (ii), the products are completely neglected.
The concept of different component temperatures
arises naturally for the systems (ii) and (iii) because
of the imposition of energy conservation [9,10] for
the system and not for each component [5]. If the
concentration of B in system (iii) is set to zero
there is an important nonvanishing effect of van-
ishing product as discussed by Fitzpatrick and
Desloge [12]. There are important and subtle dif-
ferences in the use of Chapman-Enskog method of
solution of the Boltzmann equation for these dif-
ferent systems arising from the imposition of en-
ergy conservation [9,10]. Shizgal and Napier also
provided (see Appendix of [28]) a detailed inter-
pretation of the work in [21,25]. The theoretical
results [21] were presented for system (i) in the
isolated conditions whereas Shizgal and Napier
clearly showed that these authors were in fact
treating the system (i) in a large excess of a second
nonreactive component (with the mass of A), i.e.,
in the isothermal situation.

In [31] we concentrated on new problems not
discussed in [28]. It should be emphasized that the
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analysis was performed for a system such as the
system (iii) with the introduction of the reverse re-
action. We obtained new results in the isolated
system for a special kind (the most simplified case)
of bimolecular reaction A + AsB + B. This reac-
tion was a simplified case (total neglecting of ener-
getic effect such as a heat of reaction-associated with
the changes in internal degrees of freedom) of re-
action A+ AsB+ B analyzed by Shizgal and
Napier [28]. In [31] the molecules of component B
could have a larger average kinetic translational
energy than the molecules of component A. It was
connected with choosing the appropriate reactive
cross-section for which in the collisions of A with A
the reactive changes were more probable for the fast
molecules A which in result changed to molecules B,
in contrary to the slow molecules A which could
have the elastic collisions only. The reverse reaction
was analyzed in the same way. Before presenting the
new results (confirming some very interesting results
obtained in [31]), in the next section we summarize
briefly the results derived in [31].

2. Description of the actual problem and fundamen-
tal introductory equations

In [31], the nonequilibrium effects in bimolecu-
lar chemical reaction

A+AsSB+B (8)

have been analyzed and the perturbation method
used for the solution of appropriate Boltzmann
equation, i.e. the equation in a form:

A
ot

where the elastic and reactive terms I and I, are

Iy = //(fj\lf/gz — faifa2)oaagdQdeas

= lg] +[rea (9)

+ / / (st — fafu)oang dQde, (10)

Ie = //(fBlfBz — farfar)o"gdQdes,, (11)

where f’ denotes the distribution function after
collision, whereas the indices Al, A2, B1, B2 are

introduced to distinguish two colliding molecules
of the same sort and the elastic differential cross-
section is

OAA = OAB :%dz (12)
Eqgs. (9)—(11) have been solved with the Chapman-—
Enskog perturbation method (which can be used if
the chemical reaction is so slow that the frequency of
elastic collisions is much larger than that of the re-
active ones, see e.g. [11,13,27]). After adopting the
Chapman-Enskog method the resulting integral
equations have been solved with the expansion in
Sonine polynomials. We have limited the expansion
of fa in these polynomials to the first term only

fa =101+ aVs{E)]. (13)

where the coefficient agA) is connected with the first

Sonine polynomial Sfyz((gi) (see [1,2]) has been
calculated as

a(lA)(l) — %SFXA(I - 501'x}23/x2A>
<+ Y exp(—e), ““)

where x5 and xp are the molar fractions and the
quantity J is equal to 1 (if the reverse reaction is
taken into account) or to 0 (if neglected). It has
been assumed that the threshold energies for the
forward and reverse reactions are equal. In this
special case, in the reaction (8), we do not take into
account the energy connected with the internal
degrees of freedom. Therefore, the temperature of
system 7 remains constant and d7/d¢ = 0. It can be
easily seen that if é., = 1, Eq. (14) simplifies to the
same form as that derived in [32], however, after the
additional assumption that d7/d¢ = 0. It is inter-
esting that according to Shizgal-Karplus theory
[9], the nonequilibrium temperatures of reacting
components can be calculated from the expression

TR¥(1) = Tr(1)
:T@-ﬂ“m}(R:Aﬁy (15)
We have got [31]

T[gl) = T[l — %SF)CA<1 - 5crx2B/x2A)
x (e +1) exp(—¢)] (16)
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with
T:xATA +XBTB. (17)

We have also derived from Eq. (9) that if the re-
verse reaction is neglected (which corresponds to
5cr = 0)

nar(1) = sexa (&7 +1)° exp(—e"). (18)

Additionally, we have introduced the correction to
the overall reaction

mg =1-ovr/vy (R=A,B) (19)

with the reverse reaction taken into account as v,
in

VA = Uap + UAr = Uar — Upr = —Ug. (20)

The quantity var can be called also the forward
reaction rate and v the apparent reaction rate [5].
We have derived

na(1) = Ls (e + 1) exp(—¢") = ny(1). (21)

This result is very interesting because, contrary to
Eq. (18), the relative change of the rate of chemical
reaction (8) does not depend on x,, or equivalently
on xg. That is why we have decided to check the
validity of Eq. (21) in an additional way and pre-
sent the results in this Letter. For this purpose we
have decided to use the Shizgal-Karplus temper-
atures for which the validity of use in the equilib-
rium rate coefficients has been already widely
discussed by Shizgal and Napier [28, see p. 56; Egs.
(22-25) and Fig. 1]. Shizgal and Napier [28] dem-
onstrated very clearly that the use of the Shizgal-
Karplus temperatures in the equilibrium rate
coefficient (see [28, Eq. (23)]) corresponds to the
expansion of the velocity distribution function in
Sonine polynomials with the expansion coefficients
given by powers of a; (see [28, Eq. (24)]). The
range of this approach was also reported and
discussed.

In the particular case of reaction discussed, we
have already got [31] fairly good agreement be-
tween the analytical results for the nonequilibrium
Shizgal-Karplus temperatures (see Eq. (16)) and
the results for temperatures obtained from the
simulations [31] based on the Monte Carlo method
(see, e.g. [34]). As the accuracy of the results for
the rate of chemical reaction obtained from sim-

ulations is worse than in the case of the nonequi-
librium temperatures, we have decided to check
the validity of Eq. (21) in a different way. Namely,
we will use new formulas in which the nonequi-
librium Shizgal-Karplus temperatures play a fun-
damental role.

Our Letter is organized as follows: In Section 3
we show the theoretical results necessary for
comparisons with those obtained from Eq. (21); in
Section 4 we present such comparisons and in
Section 5 we discuss them.

3. The nonequilibrium effect on the rate of chemical
reaction

In order to calculate va we use the same idea as
in our earlier papers [20,21]. This idea is very
simple. Namely, we assume that the analytical
dependence of nonequilibrium rate of chemical
reaction on temperature is the same as in the
equilibrium case. It means that we can write
o) = dspndd*(nkT /m)'* exp(—E* /kT)

(R = A,B), (22)

vre(TR) = dspnid®(nkTx /m)"* exp(—E* [kTy)

(R=A,B). (23)
If we neglect the reverse reaction, after introducing
the ratio of Egs. (23) and (22) into Eq. (4) and
taking into account Egs. (7) and (16), we can write
Nac(Ta) = 1= (Ta/T) P exple’ (1 = T/Ty)],  (24)
where from Eq. (16) we get

Ta=T 1 —%SF)CA(S* —‘r%) exp( — 8*) . (25)

If we do not neglect the reverse reaction we can use
Egs. (19), (20) and introduce the ratios of the ap-
propriate nonequilibrium and equilibrium reaction
rates for both the components (see Egs. (22) and
(23)). Then taking into consideration Eq. (16) with
0 = 1 we can derive

na(Ta, To) = 1 — {n} (Tn/T)"?
xexple* (1 — T/Tx)] —n(Ts/T)"?
xexple’(1—-T/Ts)]}/(nj —n3),  (26)
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X (e*—i— %) exp( — 8*):| , (27)

TB(I) = T[l —%SF(XB + 1/)6]3 — 2)
x (e + 1) exp(—¢)]. (28)

The equations derived above are necessary to
perform the comparisons desired. It should be
emphasized that for derivation of these equations
we decided to retain only one basis function in Eq.
(13). We took into consideration that, as shown by
Shizgal and Karplus [10], for small values of &* the
convergence of the expansion in Sonine polyno-
mials is very fast. We are mainly interested in
confirming that 7, (1) (see Eq. (21)) does not de-
pend on xp for the reactions with relatively small
¢*. We already used one basis function approxi-
mation in the perturbation method of solution of
the Boltzmann equation [35] to solve several
problems connected with simple models leading to
the negative Arrhenius activation energy in the
chemically reacting Lorentz gas.

4. Comparisons of the results obtained directly from
the perturbation solution of the Boltzmann equation
with those based on the nonequilibrium Shizgal-
Karplus temperatures

We present here a few comparisons of the re-
sults for relative change n of the rate of chemical
reaction calculated directly from the perturbation
method (see Eqgs. (4), (18), (19), (21)) with those
obtained indirectly — as described in Section 3 —
with the replacement of the equilibrium tempera-
ture 7 by the nonequilibrium ones 7, and Tp (see
Egs. (24)—(28)). Such comparisons have been al-
ready performed by Shizgal and Napier for the
reaction A + C — products (see [28, Fig. 1]). For
the reactions analyzed in this Letter, Fig. 1 repre-
sents such a comparison for the simplified case of
neglecting of the reverse chemical reaction. The
reduced threshold energy is chosen as ¢ = 1.5,
which corresponds to the maximum nonequilib-

g =15
05
04 [N
\\ """" nf(TA)
03 | S N
02 | .
\\‘
01 i ‘\‘\\
.
AN
.
O . N

XB

Fig. 1. Relative change of the rate constant of chemical reac-
tion A + A — B + B represented by #,(74) (see Eq. (24)) and n;
(see Eq. (18)) as a function of xp. The relative threshold energy
and steric factor are ¢* = 1.5 and sg = 1, respectively.

rium effect for # (compare to e.g., Fig. 2b-d). For
an analysis of this result it should be taken into
account that in this case the results of #, obtained
from the perturbation method in the direct and
indirect (introduction of 7,) ways, should be
considered only for the molar fraction of product
xg fulfilling the inequality (see [31]):

(1—xp)° 2exp(e)
<= )
XB 3 SF

(29)

This means that the comparison presented in Fig.
1 is valid for xg > 0.21 only.

In the next figures we compare the results from
the previously considered approach [31] and from
the new one, but now without neglecting the re-
verse chemical reaction. Fig. 2a shows such a
comparison for ¢ = 1.5, i.e. for the same value as
that used for Fig. 1. In Fig. 2b the same compar-
ison is presented but for a slower reaction —
characterized also by ¢* = 1.5 but with the steric
factor sg = 0.1. The values of 5 obtained for &*
different from 1.5 are also smaller than those
shown in Fig. 2a. We present such situations for
two cases: (1) a very fast reaction, e.g. ¢* = 0 (see
Fig. 2c) and (2) a relatively slow reaction, e.g.
¢ =5 (see Fig. 2d). Naturally, for analysis of re-
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Fig. 2. Relative change of the rate constant of chemical reaction A + A =2 B+ B represented by 5(7x, 7s) (see Eqs. (26)—(28)) as a
function of xp and compared with constant value of n (see Eq. (21)). The relative threshold energies and steric factors are:
@e=15sg=1,(b)e=15s5g=0.1,() e =0,sg =1, (d) & =50,sg = 1.

sults presented in Figs. 2a—d the following ranges
of xp (see [31])

xg > 1/[24 (2/3) exp(e*) /sg]
should be used.

(30)

5. Discussion

From Fig. 1, it can be seen that both the pre-
viously considered approach [31] (see Eq. (18)) and

the new one introduced in this Letter (see Eq. (24))
lead to nearly the same results for #,. This provides
a strong point for the validity of results in [31]. It
can be also seen that the agreement is the best in
the range of xp corresponding to (0.21,1.0), in
which the reactive collision rate is small relative to
the elastic one and the perturbation method
should work according to Eq. (29). The maximum
difference between the results obtained for #; and
ne(Ta) is about 3% (compare e.g., the new result
e (Ta) = 0.35 to n; = 0.36 from the previous ap-
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proach [31]). This shows that the method based on

an introduction of nonequilibrium temperatures

(used already in [20,21,35]) gives reasonable results

in the case of reactions analyzed in this Letter.

From Figs. 2a-d it follows that also such com-

parisons for the values of  (see Egs. (21) and (26))

are reasonable in the ranges described by Eq. (30).

Those ranges are (0.20,0.5), (0.031,0.5),

(0.375,0.5) and (0.01,0.5) for Figs. 2a—d, respec-

tively. Therefore, these results confirm additionally

the validity of such inequalities as (29) and (30).

From Fig. 2a it can be seen that the maximum

difference between the results for n and #(Tx, Tg) is

about 2.5% for xg = 0.2 and it becomes smaller for
larger values of xp. In Figs. 2b—d, such differences
are smaller. Even for a very fast reaction (analyzed
in Fig. 2¢) such a difference does not exceed 1% for
xp > 0.375. It means that (T4, Tg) is nearly equal
to n which is constant. This is the most valuable
result following from Figs. 2a—d, because it con-
firms that the relative change n of the rate of
chemical reaction does not depend on the con-
centration of product. This result has been ob-
tained by the method described and used in this

Letter.

From the results shown above we can see that
the effect of nonvanishing products (emphasized
already by Fitzpatrick and Desloge [12] to be not
trivial) is very important because of two reasons:
1. For slow reactions, characterized by relatively

large &¢* (e.g. ¢ = 5), the results obtained from

the perturbation method of solution of the

Boltzmann equation [31] agree with the new re-

sults for 5. In this case, 7 is small and constant.

This can be observed for relatively large ranges

of xg, in which the perturbation method works

(see Fig. 2d).

2. For fast reactions characterized by small &* the
perturbation method does not work unless
some additional conditions for the chemical re-
action are fulfilled. This can occur if: (a) an ad-
ditional quantity (the small steric factor)
diminishes the rate of reaction (compare results
in Fig. 2a to those in Fig. 2b); (b) the creation
of products increases the molar fraction of
product xg, and therefore the rate of the reverse
reaction. In this case the apparent (overall) re-
action rate decreases, i.e. the reaction becomes

slower. If the molar fraction of product xp is

large enough (see Eq. (30) and Fig. 2a and c)

the apparent reaction is slow enough for the

perturbation method to work. The effect of
nonvanishing products is very important be-

cause the value of xg plays a decisive role in a

possibility of use of the result from the pertur-

bation method. For a system without a suffi-
cient amount of products the perturbation
method cannot be used because the apparent
reaction is too fast. This concerns the system
shown in Fig. 2a. For ¢* = 1.5 and xp large en-

ough, 7 is equal nearly to 45%.

As discussed by Shizgal and Napier [28], for a
very small xg (xp nearly equal to 0) the temperature
Ty cannot be analyzed because it would become
infinite. The breakdown of our inequality (see Eq.
(30)), in this extreme limit, is in some way con-
nected with this problem. More generally, the
physical meaning of Eq. (30) is that for fast reac-
tions (low values of the right-hand side of Eq. (30))
if xp is sufficiently small, then this inequality can-
not be fulfilled and the perturbation method
breaks down.

The results obtained in this Letter are impor-
tant because they show that the results for #cpp
discussed in [21,25] are more general than earlier
expected. It means that for the perturbation so-
lution of the Boltzmann equation, the relative
change of the rate of chemical reaction does not
depend on concentration of reagents. It is inter-
esting that in a somewhat different way Nowa-
kowski [33] has come to the same conclusion.
This result is not trivial for us because it confirms
the validity of our old analytical results [21,25],
which we expected earlier to be valid for so-called
quasi stationary state only. Our old nqpp result
(see [25]) was first compared for fast reactions
with results of Monte Carlo simulations [21] and
next (also for slow and very slow reactions) with
results from solutions of appropriate differential
equations [25] describing the chemically reacting
gas. In these researches [21,25] we measured time
evolution of T,. In the range of xg close to the
minimum value of T,, we obtained nearly con-
stant values of 7, and ka;. We assumed to get ‘a
quasi stationary state’ in such a case and we
called this minimum a quasi stationary value of
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Tx the Shizgal-Karplus temperature. The slower
our reaction was, the smaller was xg for which we
got this quasi stationary state. That is why the
difference between Eqgs. (18) and (21) became very
small for very slow reactions, because x, was
nearly equal to 1 for them. However, for fast
reactions (for small ¢*) we always had qualitative
agreement for n, as a function of &, since we
neglected x5 only. Still, our results were impor-
tant. They showed the possibility of much larger
corrections to the rate of chemical reaction (for
small &) than those expected from the earlier
treatments [4,6,12]. It should be emphasized that
actually, i.e. in this treatment as well as in [31],
we use the name Shizgal-Karplus temperature as
a description of nonequilibrium temperature in
general.

Egs. (18) and (21) give the same result for #,¢(1)
and 5, (1) only in the beginning of a relatively slow
reaction. Then the products can be neglected and
xa 18 nearly equal to 1. This is the fundamental
situation for the development of the ideas of
Prigogine [1]. It is interesting that Dahler’s idea
[25] of taking into consideration the reverse reac-
tion in the case of relatively fast chemical reactions
(characterized by small &) simplifies the form of
the final results. Namely, from the results dis-
cussed above it follows that the relative change of
the rate of chemical reaction A+ A =2 B+ B
does not depend on the molar fractions of re-
agents.

Just to summarize, by introducing the non-
equilibrium Shizgal-Karplus temperatures (de-
pending on molar fractions of the reagents) into
the equilibrium expression for the rate of chemical
reaction and by comparing the results obtained
with those valid for the equilibrium temperature,
we have shown that the relative correction to the
rate of chemical reaction does not depend on
concentration of reagents. Such a relative correc-
tion which had been previously obtained within
the perturbation solution of the Boltzmann equa-
tion [31] becomes even of about 45%. We have also
confirmed the inequalities describing the concen-
tration ranges in which these results are valid.
Thus, a completely different procedure to that used
in [31] has allowed us to give a sound basis to the
claim there stated, of the existence and concen-

tration-independence character of such large
effects.
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