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One of the key subjects in introductory
physics is the problem of collisions.  It pro-
vides a nice example where conservation

laws of energy and momentum are essential.  Two ex-
treme cases are usually solved: elastic and perfectly in-
elastic collisions.  In the very simple one-dimensional
case, velocities before and after collision are readily re-
lated through the masses of the colliding bodies.  Simi-
lar solutions can be found for partially inelastic colli-
sions, provided that the degree of energy loss is known.
Otherwise, the energy balance equation cannot be
written down.  Usually, one can reasonably assess
whether the collision is perfectly inelastic (for instance,
a bullet impinging onto a piece of wood). However, it
is a matter of faith to consider a priori a collision as
elastic or as being in any intermediate situation.  We
hope this statement will become clearer to the reader
by the end of this paper.

Although everyone knows that some kind of inter-
acting forces are acting during collision, they can be
left out of the equation if the kinetic energy after colli-
sion is known.  However, their nature determines the
extent to which energy is conserved.  This means that
a complete picture of any collision event must take
these forces into account.  In spite of its interest, such
an approach is seldom taken because, in most cases, it
is not easy to present at the introductory level.  For in-
stance, during collision, macroscopic objects become
progressively deformed.  In fact, compressive waves
are traveling all along the body.  On the way, they
propagate the initial deformation of the contact sur-
face and ultimately determine the fraction of kinetic
energy conserved.1

In this paper, we analyze one singular situation
where the detailed picture of traveling waves can be
described without any kind of mathematical compli-
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cation.  The collision of rods along their axes is so sim-
ple that once the way one rod collides against a rigid
wall is understood, one has the means to solve graphi-
cally a whole series of interesting problems.  The solu-
tion of selected examples will lead us to the important
conclusion that inelastic collisions can occur even in
conditions where deformations are completely elastic.
Kinetic energy is transferred into elastic waves that
make the colliding bodies vibrate while they are sepa-
rating after collision.  Plastic deformation is not neces-
sary at all in order to produce inelastic collisions.

Reference Case: Collision Against a
Rigid Wall

When an object collides elastically against a rigid
wall, we know that as a result it will change the sign of
its initial velocity (m2 = �, in Table I). This is approxi-
mately the case of a small glass ball colliding at moder-
ate velocities with a hard surface.  However, many ob-
jects do not behave in this same way: Inelastic defor-
mation in rubber or plastic deformation in soft metals
can be responsible for energy losses.  On the other

Elastic collision:

v1i = v v2i = 0     v1f = (m1 – m2)/(m1 + m2)v

v2f = 2m1/(m1 + m2)v

Perfectly inelastic collision:

v1i = v v2i = 0

v1f = v2f = m1/(m1 + m2)v

Table I. Velocities after collision against an object at
rest.
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hand, a rod made of a perfectly elastic material seems a
good candidate for an elastic collision.  In this section
we will give a picture consistent with this hypothesis.

Our starting point is a famous result obtained in the
19th century by B. de Saint-Venant.  He demonstrat-
ed that the collision of a homogeneous rod of length L
against a rigid wall lasts a time, tc , given by

tc = 2L/c,

where c is the speed of sound in the rod.2 Because
elastic waves propagate in solids at speed c, one
deduces from Saint-Venant’s formula that the colli-
sion duration corresponds to the time an elastic wave
needs to go forward and back inside the rod.  The
exact picture, which is otherwise in accordance with
the wave equation and boundary conditions,1 is
drawn in Fig. 1.  The collision force produces a com-
pressive deformation at the front of the rod [shad-
owed region in Fig. 1(b)] that propagates at velocity
c until the back surface is reached.  This occurs at
tc /2 when the whole rod is at rest and homoge-
neously compressed.  Kinetic energy has been con-
verted into elastic potential energy.  Now, elastic
energy begins to relax at the free surface of the rod
[Fig. 1(c)]. This relaxation also can be understood in
terms of the propagation of elastic waves.  Reflection
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Fig. 1. Collision of a rod against a rigid wall. The
uniformly compressed region (shadowed) propa-
gates at the speed of sound, c. The local velocity, u,
changes abruptly from v to 0 and –v when the
deformation front advances.
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of the compressive initial wave results in a tensile
wave that exactly compensates for the previous com-
pression and allows the rod to progressively recover
its initial speed.  The collision finishes when the
front of the reflected wave reaches the wall.  At this
moment, no elastic energy remains and the local
velocity, u, at any point in the rod is just – v.  The
rod leaves the wall without loss of kinetic energy
[Fig. 1(d)].  So, this picture explains that the colli-
sion of a rod against a rigid wall is elastic.  Although
readers may think that they “intuitively” knew it
was, perhaps they might begin to have doubts about
their intuition if they knew that, in the case of the
section not being uniform, the collision would no
longer be elastic.

Collision of Two Identical Rods
The problem now is to deduce what the final

speeds will be when one rod collides against an identi-
cal one at rest.  We know that, if the collision is elastic,
the rods will simply exchange their velocities (Table I).
The following analysis, based on the picture devel-
oped in the previous section, will demonstrate that
this is the case.

Let us consider the problem from a frame attached
to the center of mass (c.m.).  Due to the fact that the
two rods are identical, their center of mass will always
be midway between them.  This means that, during
collision, the c.m. will behave like a rigid wall for each
rod.  So, this problem is equivalent to the previous
one and the collision is indeed elastic.  This event is
schematically shown in Fig. 2.  The local speed rela-
tive to the c.m., ucm, is deduced from Fig. 1 with the
slight difference that now each rod approaches the
equivalent rigid wall (their c.m.) at v/2 and not v.  For
our purposes, it is interesting to pay attention to the
values this speed takes in the lab frame, u.  During the
collision time the contact surfaces move together at
half the initial speed, v/2, and kinetic energy is pro-
gressively transferred from one rod to the other by the
deformation fronts moving at speed c [Fig. 2(b)].  In
fact, one clearly sees that kinetic energy is conserved
because both fronts reach the contact surface simulta-
neously [Fig. 2(c)] and any deformation disappears
[no shadowed region remains in the rods after the col-
lision, Fig. 2(d)].  

Now, consider a collision between two rods of
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Fig. 2. Collision of two identical rods. The plane of the center
of masses (c.m.) is equivalent to a rigid wall. In this frame the
problem is reduced to that of Fig. 1. The lack of any com-
pressed (shadowed) region in (d) means that collision has
been elastic.
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Fig. 3.  Last steps of the collision against a rod of
double length. After collision (b), the longest
rod is uniformly compressed. Only one-half of
the initial kinetic energy is conserved.

cc
equal density and dimensions but made of materials
with different c values (for instance, steel and some
kind of copper alloy).  It will not be elastic because the
deformation fronts will not reach the contact surface
at the same time, and a fraction of the initial kinetic
energy will be stored as deformation. 

Collision of Rods with Different
Lengths

This case constitutes a straightforward extension of
the previous example.  Because of the different
lengths, the deformation fronts will not return simul-
taneously to the contact surface.  So, the collision will
be inelastic.  Let us have a look at the evolution of the
elastic deformation, as shown in Fig. 3, for the partic-
ular case in which the rod initially at rest is twice as
long as the moving one of length L. 

Initially, the picture of propagating compressive de-
formation will be exactly the same as in Fig. 2(b).
This is so because when the rods begin to collide, the
interaction at the contact surface is exactly the same,
irrespective of rod length.  The elastic compression de-
pends only on local parameters such as density, elastic
modulus, and initial velocity.1,2 After time t = L/c, the
wave front in the impinging rod is reflected, whereas in
the longest rod it has still not reached the end [Fig.
3(a)].  So, the impinging rod is progressively losing its
elastic and kinetic energy, whereas the other rod is
brought progressively into movement and compressed.
After a time t = 2L/2 (that is, just after collision), the
impinging rod is completely at rest whereas the longest
one is moving at half the initial speed [Fig. 3(b)].  This
value ensures momentum conservation.  However, the
final kinetic energy is only half the initial value.  The
question is now, where has the remaining half gone?  It
is simply stored, homogeneously, as an elastic deforma-
tion in the longer rod, which is compressed [shadowed
region in Fig. 3(b)].  Once the collision has finished,
this elastic energy makes the rod vibrate, due to con-
tinuous propagation and reflection of the deformation
fronts.3 A similar analysis would deliver the kinetic
energy lost when the ratio of rod lengths has an arbi-
trary value.4

Collision Against a “Rod-Chain”
The last example will be one rod impinging against

an arrangement of two identical rods in contact, at
rest, as in Fig. 4.  The trivial solution corresponds to
the situation where the third rod leaves the ensemble
at the initial speed.  However, even if we knew that
energy was conserved, the equations of energy and
momentum conservation are not able to determine
uniquely this solution because there are more un-
knowns (the final speeds of three bodies) than equa-
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Fig. 4. Collision against two identical rods in contact.
The elastic energy accumulated in the two initially stat-
ic rods is finally transferred as kinetic energy to the last
one.
tions (two).  In the following, we will show that the
graphic method developed so far is able to confirm
that this is in fact the correct solution.

The evolution of the deformation is identical to the
previous example up to the point where the imping-
ing rod is left at rest [Fig. 3(b)].  Afterwards, rods 2
and 3 move away together at half the initial speed, and
relaxation of the compressive stress begins at the op-
posite surface of the rods [compare Fig. 3(b) to Fig.
2(b)].  When the deformation fronts meet at the con-
tact surfaces [Fig. 4(b)], the central rod remains at rest
and the last one moves with the initial speed.  No de-
formation is left in any rod (no shadowed region re-
mains).  So, the collision has been elastic [Fig. 4(c)].
The result would be exactly the same if an arbitrary
number of identical rods were placed in the chain.
Furthermore, one intermediate rod of arbitrary length
would also transmit the energy between the imping-
ing rod and the final one without losses.

This example constitutes a very simple version of
the ball-chain (also known as Newton’s Cradle) exper-
iment.  If rods were substituted with identical balls,
the result would be almost the same.5 A similar be-
havior is observed with other objects such as coins or
even nuts (!).  It is always the last piece in the chain
that takes the greatest part of kinetic energy.  The cal-
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culation of interaction forces is, in all such cases, very
complicated except in the rod-chain.  Thus, our exam-
ple provides a very simple demonstration of a more
general phenomenon.

Conclusion
We have shown that a complete understanding of

the collision between extended objects must take into
account the deformations produced during collision.
In general, these deformations are propagated as elastic
waves inside the objects and are responsible for the en-
ergy exchange.  If deformations are elastic, the collision
will only be elastic if the elastic waves cancel out once
the collision is finished.  This condition is very difficult
to achieve.  So, we can conclude with a somewhat con-
tradictory sentence: “Collisions are in general nonelas-
tic, even in the elastic regime (of deformations).”
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