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A phenomenological model for the thermodynamics of nonequilibrium chemically reacting systems is proposed.
It is based on the assumption that the specific entropy of the system is a function of the net reaction rate, as
well as of the classical variables. This assumption is confirmed by the kinetic theory of reacting dilute gas
mixtures.

1. Introduction

Classical irreversible thermodynamics (CIT) is a very suc-
cessful and general theory (see, e.g., ref 1). However, its range
of validity is restricted to near-equilibrium systems, which
excludes some relevant situations, such as fast phenomena or
systems characterized by long relaxation times. Extended
irreversible thermodynamics (EIT) deals with such more general
situations by taking for granted that the specific entropy may
depend on additional variables (see, e.g., refs 2 and 3). From
this assumption, one obtains, e.g., the following expression for
the specific entropys of a system subject to a heat flux,

wheresle is the local equilibrium (or CIT) entropy per unit mass,
τ is the relaxation time,qb is the heat flux,F is the density,λ is
the thermal conductivity, andT is the absolute temperature.

Many expressions of the type of eq 1 have been confirmed
by microscopic derivations of the specific entropy for a wide
range of phenomena (including heat conduction, convection and
radiation, diffusion, and electrical conduction) and have been
applied to a wide variety of physical systems (e.g., ideal and
nonideal gases, polymer solutions, elastic solids, electronic
devices, and nuclear matter). Does a similar result hold for
chemically reacting systems? Opposite answers to this question
have been proposed.4,5 They have in common that they are based
on phenomenological approaches. It seems therefore convenient
to look for some microscopic approach that may shed some
light on the dependence or not of the specific entropy on
additional fluxes linked to the chemical reactions proceeding
in the system. It is worth noting that whereas Grad’s thirteen-
moment kinetic theory method is very useful in the context of
EIT, because it confirms the main points of this theory,2 such
a microscopic approach to chemically reacting systems6,7 has
not so far been applied with inclusion of backward reactions.
In cases where only forward reactions are assumed, the
calculations are simpler but the affinity diverges and this seems
to make a sensible thermodynamical description impossible. In
contrast, a detailed and well-established Chapman-Enskog
theory exists with inclusion of the reverse reactions.8,9 It its true

that EIT of transport processes is based on the assumption that
dissipative fluxes (such as the heat flux, the diffusion flux, etc.)
enter as additional independent variables, and it is this point
that makes EIT fully derivable from the Grad moment method,
in which the same variables appear. In spite of this, in our
opinion, the thermodynamical consequences of the Chapman-
Enskog approach to chemical kinetics have not been analyzed
in full detail, and we would like to show here that this approach
may provide at least a first step towards the resolution of the
question posed. In fact, in such a simple situation as that
corresponding to heat conduction, one may also derive interest-
ing properties of the nonequilibrium entropy purely from the
Chapman-Enskog theory. Within this approach, one finds that
the first-order correction to the Maxwell-Boltzmann distribution
function is “proportional” to the temperature gradient. This
means that in the nonequilibrium expansion for the distribution
function

wheref(0) is the Maxwell-Boltzmann distribution function, the
first-order correction is of the formφ(1) ∝ ∇TB‚cb, wherecb stands
for the molecular velocity. Its explicit form is10,11

with êB ) (m/(2kT))1/2cb, m the molecular mass,n ) F/m the
molecular number density, andk the Boltzmann constant. Use
of this expression forφ(1) in the microscopic formula for the
second-order specific entropy, namely2

yields the result

so that the nonequilibrium correction is of the forms - s(0) ∝
(∇TB)2. As it is well known, within the first-order Chapman-
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Enskog approximation (i.e., retaining only the first two terms
in the expansion (2)), one obtains the Fourier law, which states
that the heat flux is proportional to the temperature gradient,

Therefore eq 5 may also be written

which shows that the nonequilibrium perturbation on the entropy
is proportional to the square of the heat flux,

and this is also a prediction of the result (1) of EIT (in contrast,
CIT of transport processes corresponds to neglecting the second-
order term in eq 7 or 1, i.e., to the first-order approximation for
the entropy, namelys ≈ s(0),1,12 so thatsle ) s(0)). As it has
been stressed13 and applied14 recently, the previous results show
that flux dependences of the specific entropy are not restricted
to a particular kinetic or statistical model but ubiquitously arise
in different microscopic and phenomenological approaches, and
this is not inconsistent with the well-known fact that different
evolution equations follow from the Chapman-Enskog kinetic
approach and from Grad’s theory (or from EIT). In view of
this and of the difficulties we have summed up, it would be of
importance to know if a result somehow similar to (7) can be
derived for the Chapman-Enskog approach for chemically
reacting systems. This is the problem we will tackle in the
present paper. If a relation similar to (5) or (7) holds in the
presence of chemical reactions, then there is a basis for expecting
that the thermodynamics of chemically reacting systems can
be described by means of EIT.

The plan of the paper is as follows. In the next section, we
propose a phenomenological model along the lines of EIT. In
section 3, we make some deductions concerning the properties
of the nonequilibrium entropy of chemically reacting systems
from the Chapman-Enskog approach presented in refs 8, 9,
and 15. In section 4, we compare both approaches and include
some concluding remarks.

2. Thermodynamical Approach

Classical irreversible thermodynamics (CIT) of multicom-
ponent systems is formulated upon the assumption of local
thermodynamic equilibrium (LTE), which sates that the (local
equilibrium) entropy per unit mass of the mixture depends on
the total specific internal energy,u, the specific volumeV )
1/F, and the mass fractionscγ ) Fγ/F (Fγ is the density of
componentγ), i.e., sle(u, V, cγ). From this assumption and the
thermodynamical definitions for the temperature,T, pressure,
p, and chemical potentials,µγ, namely,1,2

the local Gibbs equation immediately follows,

Extended irreversible thermodynamics (EIT) deals with
systems not necessarily in local thermodynamic equilibrium and
is based on the assumption that additional macroscopic quantities
(e.g., the heat flux in conductive systems) play the role of
independent variables. This means that the whole set of space
variables describing the system is formed by the classical
(conserved) variables plus the (nonconserved) fluxes present
in the system. Let us follow this perspective2 and assume that
the specific entropy of a nonlocal equilibrium system in which
one single chemical reaction proceeds may depend on the
reaction rateJ, as well as on the classical variables, i.e.,s(u, V,
cγ, J). We have for the entropy differential

and define, in the usual way, a generalized temperatureθ, a
generalized pressureΠ, and the generalized chemical potentials
ηγ as follows

In the rest of this section, we shall briefly discuss the
consequences of these extended expressions by following a
procedure that consists of nothing but the usual steps in EIT.2

Such an approach has been considered for chemically reacting
systems by Garcı´a-Colı́n and de la Selva,4 as well as
Nettleton.16,17The original approach4 aims to a wider scope than
the one we will present in this section, not only because of the
inclusion of transport fluxes but also because higher-order terms
were taken into account. It is worth mentioning that such an
analysis led, in particular, to very interesting results and
discussions on the relationship between the kinetic mass action
law and thermodynamics.5 Nevertheless, our main purpose here
is to look for a microscopic basis of an EIT approach to
chemically reacting systems. We will therefore consider the
simplest possible case such that it makes possible to perform a
comparison between extended thermodynamical and micro-
scopical results (the latter will be presented in the next section).
With this aim, and since the generalized entropys must reduce
to the classical entropysle in systems with vanishing reaction
rate, in near-equilibrium states we may introduce a functionR-
(u,V,cγ) that depends only on the classical variables and such
that

Therefore, the local Gibbs eq 8 is generalized into

Since this must be an exact differential in order for the specific
entropy to be a state function, we can require that
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Integration yields the following equations of state

When our analysis is restricted to an incompressible, multi-
component fluid in which diffusion and other transport processes
are absent and assuming for simplicity that the heat of reaction
may be neglected, the evolution equation for the specific entropy
in nonequilibrium processes may be written, up to second order
in J, as

where we have taken into account that the absence of heat
conduction and of heat of reaction implies an isothermal process;
we have also applied the mass fraction balance equation for
the case considered here, namely dcγ/dt ) (νγ/F)J, and
introduced the affinity of the chemical reaction as

Here νγ is the molecular mass,mγ, times the stoichiometric
coefficient with which componentγ appears in the reaction
(counted positive (negative) ifγ appears in the second (first)
member of the reaction equation). From the general law of
balance of entropy, namelyF(ds/dt) ) -∇‚BJBs + σs (JBs is the
entropy flux), it follows that the rate of production of entropy
(per unit volume) is

Note that eq 13 is a balance equation without the term
containing the divergence of a flux. This stems from our
assumption of the absence of transport processes. In fact, the
unique flux in eq 13 is the reaction rateJ, which does not appear
as a true flux in the balance equation of mass fractioncγ but as
a source term. This distinct origin of fluxes prevents one from
describing chemical reactions in the framework of EIT following
its standard procedure.5

The second law of thermodynamics requiresσs g 0. The
simplest way to assure this is to assume an evolution equation
of the form

with â g 0. This equation is an analogue to the Maxwell-
Cattaneo equations for transport processes, and such an equation
for the heat flux is assumed in the EIT derivation of the
generalized entropy (1). In a more familiar notation,

where we have introducedτ (which plays the role of a relaxation
time) and l through â ) 1/l and R ) (τT)/(pl). It is very
interesting that a special equation of this type has been derived

and applied by King in order to obtain an expression for the
relaxation time with which a reacting system slightly perturbed
from equilibrium and then isolated attains the equilibrium state
again and that his result coincides with that derived by other
methods.18 Equations of the form of (15), as well as more
general ones, also follow from an action functional of
Hamilton’s type.19

With use of the expression forR derived above, the
generalized Gibbs equation (9) may be written, up to second
order in the fluxes, as

Finally, we integrate eq 16 and obtain for the generalized
nonequilibrium specific entropy

It is worth stressing that classical irreversible thermodynamics
(as presented, e.g., in ref 1) cannot yield a result such as eq 17,
simply because this theory relies on the local equilibrium
hypothesis (which is nothing but the approximations ≈ sle).
For the purposes of the present paper, the important point in eq
17 is precisely that it includes a nonequilibrium correction to
the specific entropy, and that this correction is quadratic in the
reaction rate,s - sle ∝ J2, just as the nonequilibrium correction
in eq 1 is quadratic in the heat flux. However, the applicability
of eq 17 to non-LTE chemically reacting systems would be
reinforced if it could be backed by a microscopic approach,
just as eq 6, which follows form the Chapman-Enskog theory,
yields eq 7, which is in agreement with the EIT result (1). It is
true that eq 6 is not a Maxwell-Cattaneo equation for the heat
flux (such an equation would generalize eq 6 and can be derived
microscopically from the Grad thirteen-moment method, whereas
(6) follows from the Chapman-Enskog approach). However,
eq 6 does lead to the conclusion that the nonequilibrium entropy
of conductive systems must include an additional term in the
heat flux. Such a derivation is valid in situations such that the
term in the Maxwell-Cattaneo equation that contains the
derivative of the heat flux is negligible, i.e., it is not valid for
very fast processes. This important point, which has been already
mentioned in the introduction and elsewhere,13 is due to the
fact that the second-order specific entropy (4) depends only on
the first-order correctionφ(1) to the distribution function but
not on higher-order corrections,φ(2), φ(3), etc. A microscopic,
analogous approach to chemically reacting systems would
certainly back the concept of a rate-dependent nonequilibrium
entropy, and such an approach is discussed in the next section.

3. Microscopic Approach

We consider a system composed of ideal gases in which a
chemical reaction proceeds. The entropy per unit volume of the
system is

with cbγ andfγ the molecular velocity and distribution function
of componentγ, respectively. For the case in which a chemical
reaction characterized by an activation energy proceeds, fast
molecules of some species disappear and transform into
products. Only in equilibrium is this temporal evolution
cancelled out by the reverse reaction. Thus, even in the absence
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of transport processes, the Maxwell-Boltzmann form for the
distribution functions of the mixture, namely1

with µγ the chemical potential per unit mass of a componentγ
of an ideal gas mixture, cannot lead to exact results for
nonequilibrium reacting systems. In eq 19, we have assumed
for simplicity that the system is macroscopically at rest so that
the barycentric velocity vanishes. The quantitiesnγ andmγ are
the molecular number density and molecular mass of component
γ, respectively.

Let us first consider a very simple case, namely that in which
the system is very near to equilibrium. This will allow us to
introduce our notation and procedure, check its consistency with
well-known results for the thermodynamics of chemically
reacting systems, and then consider more general situations.

In the case of small nonequilibrium effects, the distribution
functions of the components may be approximated by
Maxwellians,

and eq 18 may be written

so that the entropy density differentialδs̃ is given, within this
approximation, by

(δs̃ is the entropy difference between two closely thermo-
dynamic states of the system; as in ref 20 we prefer the notation
δs̃, instead of ds̃, in order to avoid confusion in all equations in
which additional differentials appear). Making use of eq 19,

From the microscopic expressions for the number densities
and internal energies, namely,

introducing the energy density of the system,

and using eq 20, we obtain the macroscopic expression for the
rate of change of the entropy density,

where we have made use of the law of balance of mass for
each component, which assuming a simple reaction of the type

reads1 dnγ/dt ) -J(dnγ/dt ) -J for γ ) A, B; for C, D), with
the rate of reactionJ being given, within the approximation
(20), by21

with cbrel ij ) cbi - cbj andσf* (σb*) the differential cross section
of the reaction A+ B f C + D (A + B r C + D). In
nonequilibrium statesJ(0) does not vanish because the number
densitiesnγ do not satisfy the equilibrium relationship (nAnB)/
(nCnD) ) kr

(0)/kf
(0). Assuming for simplicity that the heat of

reaction is negligible, comparison of eq 24 with the balance
equation of entropy allows us (taking into account that dũ/dt )
0 in the absence of fluxes other thanJ and of heat of reaction)
to identify the entropy production rate due to the proceeding of
the chemical reaction, within this approximation, as

Making use of the definition (14) for the affinity, i.e.,A ) mAµA

+ mBµB - mCµC - mDµD, we obtain

which is the result first derived microscopically by Prigogine.12

It is not difficult to derive the local Gibbs equation (8) from
the previous results in this section. Moreover, the second law
requires thatσs g 0. This will hold provided that

with L(0) g 0. It is true that this linear law is unrealistic except
very close to equilibrium,22,23but it is an adequate starting point
in order to try to extend the classical theory.

We now consider states further away from equilibrium. This
implies that the approximation (20) no longer holds. We write
the distribution functions as

which are analogous to eq 2, with the difference that the
nonequilibrium corrections are now due to the proceeding of
the chemical reaction. The number of necessary terms for this
expansion to yield a reasonable description will increase as
further away from equilibrium states are considered. As it is
shown in Appendix A that from the theory due to Shizgal and
collaborators a simple expression for the first-order correction
can be obtained,

whereq andε* are parameters for the reaction. In order to find
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out the entropy density, we expand eq 18 up to second order:

with s̃(0) given by (21). From eq 19, we see that both the second
and third terms in the former expression fors̃ are of the form

with i ) 1, 2, respectively. However, in the kinetic theory, it
follows from the microscopic expressions for the molecular
number densities and the internal energy density that∫ dcbγ
fγ(0)φγ

(i) ) 0 for any values ofi andγ, and that the∑γ ∫ dcbγ
((mγcγ

2)/2) fγ(0)φγ
(i) ) 0, respectively.10 Therefore, the second

and third terms in eq 30 vanish. This is analogous to the
vanishing of similar integrals in the microscopic expression for
the entropy density of systems under matter1,2 and radiation24

transport processes. Equation 30 reduces to

which is the analogue to eq 4 for chemically reacting dilute
mixtures instead of transport processes in a single-component
ideal gas.

We may mention that if one wishes to evaluate the entropy
densityup to first-order, the last term in (31) is negligible. It is
therefore clear that the first equality in eq 24 still holds and we
have

We may proceed as in the zeroth-order approximation and, after
comparison with the law of balance of entropy, find that the
entropy production for the case considered may be written as
σs ) AJ/T, which generalizes eq 26, holdsin the first-order
approximation, and is in agreement with the results by Ross
and Mazur.21

After inserting eq 29 into eq 31 and performing the integra-
tions, we obtain for the second-order entropy,

as it is shown in Appendix B.

4. Discussion

Equation 32 is a chemical analogue to (5). Both of them have
been derived from the Chapman-Enskog theory. We now recall
that in the well-established approach to heat conduction, eq 5,
transforms into the flux-dependent entropy (7) by use of eq 6,
which holds in the first-order approximation (2). In the same
level of approximation for chemically reactive systems, the

reaction rate is given by

where

Insertion of eq 29 into eq 34 and integration will yield a result
of the form

where the explicit form ofL(1) can be derived only if a specific
reaction mechanism is assumed so that eq 34 can be integrated
(the same happens forL(0), see eqs 27 and 25. Such an
expression forL(1), together with that for the affinity in terms
of concentrations, are necessary in studies of nonequilibrium
effects on the reaction rate but not in the context of a
thermodynamical analysis of the system, which is the main
purpose of the present paper. The conclusion thatJ(1) is
proportional to the affinityA is consistent with the results in
ref 15, where the contribution toJ(1) stemming from the forward
reaction was found to be proportional to the affinity in the case
of near-equilibrium systems. According to eqs 33, 27, and 35,
in the first-order approximation (28) we have

so that eq 32 yields for the specific entropys ) s̃/F,

with F ) ∑γFγ. The fact thats < s(0) was to be expected, since
the entropy maximum corresponds to the equilibrium state and
in this case the forward and backward reactions balance each
other (J ) 0 ). According to eq 37, the nonequilibrium correction
to the entropy of the reacting system is proportional toJ2 in
near-equilibrium states. This is in agreement with the EIT result
(17). Thus, a reaction rate entropy dependence is predicted, just
as a heat flux dependence is predicted by the Chapman-Enskog
theory in the case of heat conduction (eq 7), and both results
are consistent with EIT (eqs 17 and 1, respectively).25 Therefore,
and in spite of the fact that we have considered situations very
close to equilibrium, we conclude that EIT seems to be an
adequate framework for the thermodynamical description of
chemically reacting systems. Before closing this paper, we
would like to mention that, in some way, this result is not
surprising because the same conclusion has recently been
reached for radiative transfer,24 which is nothing but a trans-
formation of one species of matter into another by the
interchange of photons; that is, it may be viewed as an special
case of a chemically reacting system. The reason why, in
contrast to what was done in refs 20 and 24, we have not made
use of statistical mechanics but of kinetic theory is that the
radiative transfer equation is much simpler mathematically than
the Boltzmann equation and, within information statistical
theory, the use of the chemical rate of reaction as an additional
constraint leads to extremely complicated equations except for
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some simple systems for which one may not consistently
evaluate the entropy density of the overall system.26

Just to summarize, the reaction rate is not a flux in the usual
sense because it does not appear as a true flux in the balance
equations of mass fractions; instead, it appears as a source term
there. In spite of this, we have shown how chemical reactions
can be included in the much broader framework of extended
irreversible thermodynamics (EIT). Such a conclusion has been
reached here under the assumptions that diffusion and other
transport processes, as well as the heats of reaction, are
negligible. These assumptions simplify the problem since they
imply that the internal energy and temperature are constant and
that there is no entropy flux. We have shown that, close to
equilibrium, the nonequilibrium entropy contains a term in the
square of the reaction rate and that our conclusion is comforted
by comparison to the kinetic theoretical results of Shizgal and
co-workers for the case in which linearity between the reaction
rate and the chemical affinity holds (eq 36). We stress again
that this linearity is unrealistic unless when dealing with states
very close to equilibrium. In the future, it would therefore be
of importance to try to extend the approach here presented to
situations including a nonlinear mass action law instead of eq
15.

Note Added in Proof: In the microscopic approach, presented
in section 3 and Appendix A, we have made use of the
assumptions that the first Sonine term yields a reasonable
approximation and that Present’s line-of-centers model can be
applied. Such assumptions have allowed us to perform explicit
microscopic calculations (see the explicit expressions for
Fγ(q,ε*,T,{mγ}) at the end of Appendix A). It is worth stressing,
however, that according to Shizgal’s microscopic approach (see
Appendix A to ref 15), the nonequilibrium correctionsφγ

(1) are
proportional to the affinity even without need to consider such
assumptions so that eq 37 is still valid. This is in agreement
with the reaction flux quadratic dependance in the EIT result
(17), which does not rely on those assumptions either.

5. Appendix A

Derivation of Eq 29. The problem of how a chemical
reaction affects the distribution functions of the components was
solved, with inclusion of the back reaction and in near-
equilibrium states, by Shizgal and Karplus8 (see also ref 9).
Therefore, their derivation will not be repeated here. They made
use of the Chapman-Enskog method. This approach is valid
provided that the elastic time scale is much less than the reactive
time scale.27 It means that reactive collisions are much less
frequent than elastic ones and therefore the reaction causes a
small perturbation on the system under consideration. In refs 8
and 9, this method has been applied to a variety of cross sections
and levels of approximations. The authors were interested in
the important problem of the nonequilibrium effects on the
reaction rate. For this reason, they gave general expressions and
performed many evaluations but did not include explicit
expressions for the perturbationsφγ

(1) in terms of thermody-
namical quantities. Thus, in this appendix we show, for the sake
of completeness, that the results in refs 8 and 9 lead to eq 29.

The general form forφγ
(1), within the Chapman-Enskog

method, is an infinite series of Sonine polynomials. The first
nonvanishing term is a reasonable approximation in some cases,
but in general, additional terms are necessary. The number of
necessary terms has been evaluated by comparison of several
subaproximations in specific cases and depends on the mech-
anism and parameters of the reaction considered.8,9,15 For the

purposes of the present paper, it is sufficient to consider
situations such that the first nonvanishing term dominates so
that the correctionsφγ

(1) are of the simple form8

where

andêγ is the reduced speed of theγ-component molecules. In
order to find outa1

(γ) explicitly, it is necessary to find out some
additional quantities first. As in ref 9, for simplicity we consider
the simple reaction

so that the conservation of mass implies thatmB ) mC ≡ m.
We begin with the definitions8,15

where crelγ is the relative velocity of the pair of reactively
colliding molecules, andγ ) B, C denotes the component. We
will make use of the Present line-of-centers cross section

whereε ) m/4crelγ
2 and we have assumed for simplicity the same

threshold energyε* for the forward and backward reactions.
This corresponds to assuming that the heat of reaction is
negligible (in this way we are able to concentrate on the problem
posed by making use of rather simple equations; if we
considered exothermic or endothermic reactions, we would have
a nonsteady system temperature and its effect on the nonequi-
librium corrections could become very important8,9). Also for
simplicity, we have assumed the steric factors and elastic
collision diameters (q andd, respectively) to be the same for
the forward and backward reactions (this does not affect the
conclusions in the present paper and, again, makes equations
simpler; in fact, according to microscopical reversibility the
product qd2 must be the same for both reactions9). After
performing the integrations,

We use a notation consistent with that in refs 8 and 9 by
introducing

φγ
(1) ) a1

(γ)(32 - êγ
2) (38)

êγ
2 )

mγcγ
2

2kT
(39)

B + B a C + C (40)

K0
(γ) ) 1

π ∫0

∞
e-mcrelγ

2/4kT ( m
4kT)2

crelγ
3 σ*(crelγ) dcrelγ

K1
(γ) ) 1

π ∫0

∞
e-mcrelγ

2/4kT ( m
4kT)3

crelγ
5 σ*(crelγ) dcrelγ

σ*(crelγ) ) 0 crelγ < crelγ* (41)

π2

4
qd2(1 - ε*

ε ), crelγ g crelγ*

K0
(γ) ) qd2

2
e-ε*/kT

K0
(γ) ) qd2

2
e-ε*/kT(2 + ε*

kT)

A1
(γ) ) 2nγ

2(πkT
m )1/2(32K0

(γ) -K1
(γ)) )

nγ
2qd2(πkT

m )1/2
e-ε*/kT(12 + ε*

kT)
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As shown by Shizgal and collaborators,8,9 from the Chap-
man-Enskog method it is found that the coefficientsa1(γ) that
appear in the single-Sonine approximation (38) are the solutions
to the following set of two equations

where, for the case considered,R1
(B) is given by9

and {BB} and {BC} are typical elastic collision integrals of
Sonines11 (in the notation in ref 8,{SB

(1), SB
(1)} and{SB

(1), SC
(1)},

respectively, withSγ
(1) ) (3/2 - êγ

2), which have been performed
for the hard-sphere cross section to yield (see Tables I and II in
ref 8)

The system is easily solved and we find

In equilibrium (Jf
(0) ) Jb

(0)), for the case considered in this
appendix we have (from eqs 41, for both reactions, and 25)
that nB ) nC. This implies, according to eqs 43 and 44, that
a1

(B) ) 0 anda1
(C) ) 0. Therefore, the corrections (38) vanish

and the distribution functions are Maxwellians, as they should
be.

In order to write down eqs 43 and 44 in terms of the affinity,
namely (see eqs 14, 40, and 19)

we note that near equilibrium

Within this approximation, eqs 43 and 44 become

Obviously, in equilibriumA ) 0 and the perturbations vanish,
again as they should.

Insertion of the above results into eq 38 completes the
derivation of eq 29. For the case considered, we also find that

and

The results in the present appendix can also be obtained, in
a lengthier way, from the kinetic-theoretical approach presented
in ref 8, where use is made of the chemical affinity.

6. Appendix B

Derivation of Eq 32. From eqs 31 and 29, it follows that

The first and second integrals are simplynγ andũγ/(kT) ) 3/2nγ,
respectively (see eqs 22, 23, and 39). The third integral is easily
performed by making use of the well-known formula

and we immediately find eq 32. A second way to derive eq 32
is by making use of the tabulated value for the integral∫ dcbγ
fγ(0) (3/2 - êγ

2) (see the tables in ref 15 or ref 8).
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