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A phenomenological model for the thermodynamics of nonequilibrium chemically reacting systems is proposed.
It is based on the assumption that the specific entropy of the system is a function of the net reaction rate, as
well as of the classical variables. This assumption is confirmed by the kinetic theory of reacting dilute gas
mixtures.

1. Introduction that EIT of transport processes is based on the assumption that

Classical irreversible thermodynamics (CIT) is a very suc- dissipative qu_>§es (SL.'Ch as the heat flyx, the dlfoS.IO.n flu?<, etc_.)
enter as additional independent variables, and it is this point

cessful and general theory (see, e.g., ref 1). However, its range .
of validity is restricted to near-equilibrium systems, which that makes EIT fully derivable from the Grad moment method,

excludes some relevant situations, such as fast phenomena og1 i\'r\:rc;ﬁhtrtlt;ihﬁmg dvarllgzrir?ilc?:l ggr?::rﬁtlerrllcse%tgf (t);etkgi,alnmc;%r
systems characterized by long relaxation times. Extended P ' y q g

irreversible thermodynamics (EIT) deals with such more general !Enskog approach to chemical kinetics have not been analyzed

- . " n full detail, and we would like to show here that this approach
situations by taking for granted that the specific entropy may : . ' .
depend on additional variables (see, e.g., refs 2 and 3). From™May provide at least a first step towards the resolution of the

this assumption, one obtains, e.g., the following expression for question ppsed. In fact, in S.UCh a simple situation as that
the specific entropy of a system subject to a heat flux corresponding to heat conduction, one may also derive interest-

ing properties of the nonequilibrium entropy purely from the
> Chapman-Enskog theory. Within this approach, one finds that
(@) 1) the first-order correction to the MaxwelBoltzmann distribution
function is “proportional” to the temperature gradient. This
means that in the nonequilibrium expansion for the distribution
function

T
S=S,—

S 20AT?
wheresg is the local equilibrium (or CIT) entropy per unit mass,
T is the relaxation timeg is the heat fluxp is the density4 is
the thermal conductivity, and is the absolute temperature. F= 1O (11 o0 4 ) @

Many expressions of the type of eq 1 have been confirmed

by microscopic derivations of the specific entropy for a wide \yheref© js the Maxwel-Boltzmann distribution function, the

ran_ge_of pht_enor_nena (including_ heat condut_:tion, convection andsj si-order correction is of the form® O VT+C, wheret stands
radiation, diffusion, and electrical conduction) and have been o, the molecular velocity. Its explicit form 1811

applied to a wide variety of physical systems (e.g., ideal and
nonideal gases, polymer solutions, elastic solids, electronic @_ _  2m (2k\¥2 (., 5 VT-E 3
devices, and nuclear matter). Does a similar result hold for ¢ = 5nIET (mT) (§ 2) § 3)
chemically reacting systems? Opposite answers to this question
have been proposéd.They have in common that they are based with E = (m/(2kT))Y%, m the molecular mass) = p/m the
on phenomenological approaches. It seems therefore convenieninolecular number density, arktthe Boltzmann constant. Use
to look for some microscopic approach that may shed some of this expression fop® in the microscopic formula for the
light on the dependence or not of the specific entropy on second-order specific entropy, nantely
additional fluxes linked to the chemical reactions proceeding
in the system. It is worth noting that whereas Grad’s thirteen- O N 0¢(1)
moment kinetic theor i i s=s9-~ f def® - (4)
y method is very useful in the context of P 2

EIT, because it confirms the main points of this thebsych
a microscopic approach to chemically reacting sysferhas yields the result
not so far been applied with inclusion of backward reactions.
In cases where only forward reactions are assumed, the _ 0 22

. . o . S=s/————
calculations are simpler but the affinity diverges and this seems 5K22T3
to make a sensible thermodynamical description impossible. In
contrast, a detailed and well-established Chapntamskog so that the nonequilibrium correction is of the fosm- s O
theory exists with inclusion of the reverse reactidf# its true (VT)2 As it is well known, within the first-order Chapman
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(VT)? (5)
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Enskog approximation (i.e., retaining only the first two terms
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Extended irreversible thermodynamics (EIT) deals with

in the expansion (2)), one obtains the Fourier law, which states systems not necessarily in local thermodynamic equilibrium and

that the heat flux is proportional to the temperature gradient,

G=-AVT (6)
Therefore eq 5 may also be written
) 1
s=s"— (@ (7)
5K°n°T?

is based on the assumption that additional macroscopic quantities
(e.g., the heat flux in conductive systems) play the role of
independent variables. This means that the whole set of space
variables describing the system is formed by the classical
(conserved) variables plus the (nonconserved) fluxes present
in the system. Let us follow this perspecthand assume that

the specific entropy of a nonlocal equilibrium system in which
one single chemical reaction proceeds may depend on the
reaction ratel, as well as on the classical variables, isu, v,

which shows that the nonequilibrium perturbation on the entropy ¢ J)- We have for the entropy differential

is proportional to the square of the heat flux,

0s
O o y=r2 ds=|— du+|— dv +
s—s0 (q) au v,C,J v, uc,.J
and this is also a prediction of the result (1) of EIT (in contrast, z s dc + s dJ
CIT of transport processes corresponds to neglecting the second- 7 \9C, /g 7 \ad e
r Ty

ordertermineq 7 or 1, i.e., to the first-order approximation for
the entropy, namelg ~ 9,112 50 thatge = §9). As it has
been stressédand applied* recently, the previous results show

that flux dependences of the specific entropy are not restricted

to a particular kinetic or statistical model but ubiquitously arise

in different microscopic and phenomenological approaches, and

this is not inconsistent with the well-known fact that different
evolution equations follow from the ChapmaBnskog kinetic
approach and from Grad'’s theory (or from EIT). In view of
this and of the difficulties we have summed up, it would be of
importance to know if a result somehow similar to (7) can be
derived for the ChapmarEnskog approach for chemically
reacting systems. This is the problem we will tackle in the
present paper. If a relation similar to (5) or (7) holds in the

and define, in the usual way, a generalized temperaiyr
generalized pressuié&, and the generalized chemical potentials

n, as follows
1_(ss)  M_|(ds __(ss
0 au z,r,cy,J 0 v u,cy,J acy u,v,J

In the rest of this section, we shall briefly discuss the
consequences of these extended expressions by following a
procedure that consists of nothing but the usual steps ir?EIT.
Such an approach has been considered for chemically reacting
systems by GafatColn and de la Selv4, as well as

Ty

0

presence of chemical reactions, then there is a basis for expectind\ettleton!617The original approactaims to a wider scope than
that the thermodynamics of chemically reacting systems canthe one we will present in this section, not only because of the
be described by means of EIT. inclusion of transport fluxes but also because higher-order terms
The plan of the paper is as follows. In the next section, we were taken into account. It is worth mentioning that such an
propose a phenomenological model along the lines of EIT. In analysis led, in particular, to very interesting results and
section 3, we make some deductions concerning the propertiesdiscussions on the relationship between the kinetic mass action
of the nonequilibrium entropy of chemically reacting systems law and thermodynamicsiNevertheless, our main purpose here
from the ChapmanEnskog approach presented in refs 8, 9, is to look for a microscopic basis of an EIT approach to
and 15. In section 4, we compare both approaches and includechemically reacting systems. We will therefore consider the
some concluding remarks. simplest possible case such that it makes possible to perform a
comparison between extended thermodynamical and micro-
scopical results (the latter will be presented in the next section).
With this aim, and since the generalized entrgpyust reduce
to the classical entropge in systems with vanishing reaction
Classical irreversible thermodynamics (CIT) of multicom- rate, in near-equilibrium states we may introduce a funation
ponent systems is formulated upon the assumption of local (y,,,c,) that depends only on the classical variables and such
thermodynamic equilibrium (LTE), which sates that the (local that
0 _
(89,

equilibrium) entropy per unit mass of the mixture depends on
Therefore, the local Gibbs eq 8 is generalized into

2. Thermodynamical Approach

the total specific internal energy, the specific volumey =
1/p, and the mass fractions, = p,/p (p, is the density of
component), i.e., se(u, v, ¢,). From this assumption and the
thermodynamical definitions for the temperatufe pressure,
p, and chemical potentialg,, namely!?

1_ (% (%
T \au),e’ 0 Jye

the local Gibbs equation immediately follows,

a
TJ

1.1 n a
“,_ [dse =>dut—dv -y —dc,— —JdJ
=5 o 0 2 T
uw

T

p ds= ()]

T v

Since this must be an exact differential in order for the specific
entropy to be a state function, we can require that

o ) -t )2

1 p u,
ds.=-du+-—-dv— S —dc
Se T T ZT v
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Integration yields the following equations of state

1_1 FPof
0 T Zau(T) (10)
N_p Yo
0 T 2aU(T) (1)
My _ My P9
0= T 2% (T) (12)

When our analysis is restricted to an incompressible, multi-

component fluid in which diffusion and other transport processes
are absent and assuming for simplicity that the heat of reaction

Fort et al.

and applied by King in order to obtain an expression for the
relaxation time with which a reacting system slightly perturbed
from equilibrium and then isolated attains the equilibrium state
again and that his result coincides with that derived by other
methodsi® Equations of the form of (15), as well as more
general ones, also follow from an action functional of
Hamilton’s type!®

With use of the expression foo. derived above, the
generalized Gibbs equation (9) may be written, up to second
order in the fluxes, as

1 p /’ty T
ds=—-du+—-dv— Y —dc,——JdJ 16
T T 2 7% | (16)

Ll P

may be neglected, the evolution equation for the specific entropy Finally, we integrate eq 16 and obtain for the generalized
in nonequilibrium processes may be written, up to second order nonequilibrium specific entropy

in J, as

(13)

ds_ ;A _apdd
pdt_‘](T T dt)

LJZ

s(uw,c,J) = s(u,c,) — 2] a7

It is worth stressing that classical irreversible thermodynamics

where we have taken into account that the absence of heatas presented, e.g., in ref 1) cannot yield a result such as eq 17,
conduction and of heat of reaction implies an isothermal process;simply because this theory relies on the local equilibrium

we have also applied the mass fraction balance equation forhypothesis (which is nothing but the approximat®r: Se).

the case considered here, namelg/d = (v,/p)J, and
introduced the affinity of the chemical reaction as

A=— Zvy,uy

Here v, is the molecular massn,, times the stoichiometric
coefficient with which componeny appears in the reaction
(counted positive (negative) if appears in the second (first)
member of the reaction equation). From the general law of
balance of entropy, namely(ds/dt) = —V-J° + ¢° (J% is the
entropy flux), it follows that the rate of production of entropy
(per unit volume) is

(14)

Note that eq 13 is a balance equation without the term
containing the divergence of a flux. This stems from our

For the purposes of the present paper, the important point in eq
17 is precisely that it includes a nonequilibrium correction to
the specific entropy, and that this correction is quadratic in the
reaction rates — se 0 J?, just as the nonequilibrium correction

in eq 1 is quadratic in the heat flux. However, the applicability
of eq 17 to non-LTE chemically reacting systems would be
reinforced if it could be backed by a microscopic approach,
just as eq 6, which follows form the ChapmaBnskog theory,
yields eq 7, which is in agreement with the EIT result (1). Itis
true that eq 6 is not a MaxwetiCattaneo equation for the heat
flux (such an equation would generalize eq 6 and can be derived
microscopically from the Grad thirteen-moment method, whereas
(6) follows from the ChapmanEnskog approach). However,
eq 6 does lead to the conclusion that the nonequilibrium entropy
of conductive systems must include an additional term in the
heat flux. Such a derivation is valid in situations such that the
term in the Maxwel-Cattaneo equation that contains the
derivative of the heat flux is negligible, i.e., it is not valid for

assumption of the absence of transport processes. In fact, thevery fast processes. This important point, which has been already

unique flux in eq 13 is the reaction ratewhich does not appear
as atrue flux in the balance equation of mass fractioput as
a source term. This distinct origin of fluxes prevents one from
describing chemical reactions in the framework of EIT following
its standard procedufe.

The second law of thermodynamics requiegs> 0. The

mentioned in the introduction and elsewhétés due to the
fact that the second-order specific entropy (4) depends only on
the first-order correctiong® to the distribution function but
not on higher-order correctiong?, ¢, etc. A microscopic,
analogous approach to chemically reacting systems would
certainly back the concept of a rate-dependent nonequilibrium

simplest way to assure this is to assume an evolution equationentropy, and such an approach is discussed in the next section.

of the form

A_oapdd

TTra M

with g = 0. This equation is an analogue to the Maxwell

3. Microscopic Approach

We consider a system composed of ideal gases in which a
chemical reaction proceeds. The entropy per unit volume of the
system is

Cattaneo equations for transport processes, and such an equation

for the heat flux is assumed in the EIT derivation of the
generalized entropy (1). In a more familiar notation,

dJ
=

_ A
dt+J_IT

(15)

where we have introducadwhich plays the role of a relaxation
time) and| through = 1/1 and o = (zT)/(pl). It is very

8=ps=—k} Jdef(nf, — 1) (18)
Y

with €, andf, the molecular velocity and distribution function
of componenty, respectively. For the case in which a chemical
reaction characterized by an activation energy proceeds, fast
molecules of some species disappear and transform into
products. Only in equilibrium is this temporal evolution

interesting that a special equation of this type has been derivedcancelled out by the reverse reaction. Thus, even in the absence
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of transport processes, the MaxweBoltzmann form for the where we have made use of the law of balance of mass for

distribution functions of the mixture, namély each component, which assuming a simple reaction of the type
m, 3?2 o c o —c,22)K A+B=C+D
fy(O) — ny(%_ g MOIKT — Jdn (ke H2)KT (19)

reads dn,/dt = FJ(dn,/dt = —J for y = A, B; for C, D), with
with u, the chemical potential per unit mass of a component the rate of reactiod being given, within the approximation
of an ideal gas mixture, cannot lead to exact results for (20), by!
nonequilibrium reacting systems. In eq 19, we have assumed
for simplicity that the system is macroscopically at rest so that j~ @ = 3© _ 3 O = kf(O) P kr(O) NN. =
: . . o f b Al c!p
the barycentric velocity vanishes. The quantitiesindm, are

the molecular number density and molecular mass of component S [ [ dQdc, deg O 1% * cg ap —
y, respectively. ~ = £ Ok (0
Let us first consider a very simple case, namely that in which f f f d€2 d¢. dcp, fo ™ fp 0y Ceicp (25)

the system is very near to equilibrium. This will allow us to = o _ ) .
introduce our notation and procedure, check its consistency with With Crelj = G — G andog* (0v*) the differential cross section
well-known results for the thermodynamics of chemically Of the reaction A+ B — C + D (A + B—C+ D). In
reacting systems, and then consider more general situations. Nonequilibrium stated® does not vanish because the number
In the case of small nonequilibrium effects, the distribution densitiesn, do not satisfy the equilibrium relationshipafis)/
functions of the components may be approximated by (Ncno) = k(@/k{?. Assuming for simplicity that the heat of

Maxwellians, reaction is negligible, comparison of eq 24 with the balance
equation of entropy allows us (taking into account thatid=
f ~fO (20) 0 in the absence of fluxes other thamand of heat of reaction)
v to identify the entropy production rate due to the proceeding of
and eq 18 may be written the chemical reaction, within this approximation, as
a0 — _ c f Onf © _ 1
s~8%=—ky Jde, £ 0nt© —1) (21) o0 — - S Fmu IO
4 7

so that the entropy density differentié® is given, within this
approximation, by

08%=—-ky [de,In £ of
v

Making use of the definition (14) for the affinity, i.e8,= maua
+ Meug — Mcic — Mpup, We obtain

0)
g0 = AL (26)
(68 is the entropy difference between two closely thermo-
dynamic states of the system; as in ref 20 we prefer the notationwhich is the result first derived microscopically by Prigogife.
0%, instead of &, in order to avoid confusion in all equations in It is not difficult to derive the local Gibbs equation (8) from
which additional differentials appear). Making use of eq 19, the previous results in this section. Moreover, the second law

requires thav® = 0. This will hold provided that
2

m}/ﬂy . 0 1 - rnycy 0
. [ dc, o, ”“}Z [ dc, Tafﬂ JO = LOA (27)
v

o80=-%
Y

with L© > 0. It is true that this linear law is unrealistic except
very close to equilibriund223but it is an adequate starting point

in order to try to extend the classical theory.

_ We now consider states further away from equilibrium. This
n,= [dc,f, (22) implies that the approximation (20) no longer holds. We write

the distribution functions as

From the microscopic expressions for the number densities
and internal energies, namely,

2

- -~ MG
0,= [ dc,——f 23
,=J dc, 2 (23) f,=100+¢ Y+ .) (28)
introducing the energy density of the system, which are analogous to eq 2, with the difference that the
0= S nonequilibrium corrections are now due to the proceeding of
Z 4 the chemical reaction. The number of necessary terms for this

expansion to yield a reasonable description will increase as
and using eq 20, we obtain the macroscopic expression for thefurther away from equilibrium states are considered. As it is

v

rate of change of the entropy density, shown in Appendix A that from the theory due to Shizgal and
collaborators a simple expression for the first-order correction
gg© 1 dn, 1dg can be obtained,
_=__Z”V_+__ (24)
dt TS da Tdt ) . 3 )
i 0" =F,@eTmpAS -5 @9

1 1du
=-25 Fmn JO+-—
T T dt whereq ande* are parameters for the reaction. In order to find



864 J. Phys. Chem. B, Vol. 103, No. 5, 1999 Fort et al.

out the entropy density, we expand eq 18 up to second order:reaction rate is given by
s=%0) - kY J dc, £,0Inf%,® - 3= 3
v
12 where
K [de, @t % @k [de O — (30)
Z A Z T2 W= [ [dQ de, degf, O % p," +

with 9 given by (21). From eq 19, we see that both the second Wyg* ¢ — dQ dE.- dE- £.Of Op @ 4
and third terms in the former expression ®are of the form 957)01" Cret 5 fff P (lc) o (%
$p )0" Creicp (34)

& © 0, () — _ Ie 0, () _ . . . . N
kz f dcy fv In fy ¢, = z Tf dcv fy b, Insertion of eq 29 into eq 34 and integration will yield a result
Y Y

of the form
1 —
'I_'; fdcy

with i = 1, 2, respectively. However, in the kinetic theory, it
follows from the microscopic expressions for the molecular
number densities and the internal energy density fhat,
f,0¢,0) = 0 for any values of andy, and that the}, / dg,
((m,c,»12) £,0¢,0) = 0, respectively? Therefore, the second
and third terms in eq 30 vanish. This is analogous to the
vanishing of similar integrals in the microscopic expression for
the entropy density of systems under matteand radiatioft
transport processes. Equation 30 reduces to

2

C
m "t O O
2 v v

IV =1L®A (35)

where the explicit form of @ can be derived only if a specific
reaction mechanism is assumed so that eq 34 can be integrated
(the same happens fdr©®), see eqs 27 and 25. Such an
expression folL®, together with that for the affinity in terms
of concentrations, are necessary in studies of nonequilibrium
effects on the reaction rate but not in the context of a
thermodynamical analysis of the system, which is the main
purpose of the present paper. The conclusion th&tis
proportional to the affinityA is consistent with the results in
ref 15, where the contribution t#" stemming from the forward

(12 reaction was found to be proportional to the affinity in the case
2 20 _ = £ (07 of near-equilibrium systems. According to eqgs 33, 27, and 35,
5TS K ; f dc, 1, 2 (31) in the first-order approximation (28) we have

which is the analogue to eq 4 for chemically reacting dilute J= L9+ LA (36)

mixtures instead of transport processes in a single-component

ideal gas. so that eq 32 yields for the specific entropy= ¥p,

We may mention that if one wishes to evaluate the entropy

densityup to first-order the last term in (31) is negligible. It is 3k F(aeT{m}) 2

therefore clear that the first equality in eq 24 still holds and we s=9—-—§Yn|l———| 7 (37)

have 4o 5 LO 41 @
a1 - I+ 1dd with p = ¥,p,. The fact thas < s was to be expected, since
dt o T ; M,y T dt the entropy maximum corresponds to the equilibrium state and

in this case the forward and backward reactions balance each
We may proceed as in the zeroth-order approximation and, afterother § = 0 ). According to eq 37, the nonequilibrium correction
comparison with the law of balance of entropy, find that the to the entropy of the reacting system is proportionalian
entropy production for the case considered may be written asnear-equilibrium states. This is in agreement with the EIT result
o = AJT, which generalizes eq 26, holds the first-order (17). Thus, a reaction rate entropy dependence is predicted, just
approximation and is in agreement with the results by Ross as a heat flux dependence is predicted by the Chapiiaaskog

and Mazur! theory in the case of heat conduction (eq 7), and both results
After inserting eq 29 into eq 31 and performing the integra- are consistent with EIT (eqs 17 and 1, respectivéliherefore,
tions, we obtain for the second-order entropy, and in spite of the fact that we have considered situations very

close to equilibrium, we conclude that EIT seems to be an
= _ =(0) 3k * 2 A2 adequate framework for the thermodynamical description of
S=S _Z ZnV[FV(q’E MBI A (32) chemically reacting systems. Before closing this paper, we
4 would like to mention that, in some way, this result is not
as it is shown in Appendix B. surprising because the same conclusion has recently been
reached for radiative transfétwhich is nothing but a trans-
_ ) formation of one species of matter into another by the
4. Discussion interchange of photons; that is, it may be viewed as an special
case of a chemically reacting system. The reason why, in
Equation 32 is a chemical analogue to (5). Both of them have contrast to what was done in refs 20 and 24, we have not made
been derived from the ChapmaRknskog theory. We now recall  use of statistical mechanics but of kinetic theory is that the
that in the well-established approach to heat conduction, eq 5,radiative transfer equation is much simpler mathematically than
transforms into the flux-dependent entropy (7) by use of eq 6, the Boltzmann equation and, within information statistical
which holds in the first-order approximation (2). In the same theory, the use of the chemical rate of reaction as an additional
level of approximation for chemically reactive systems, the constraint leads to extremely complicated equations except for
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some simple systems for which one may not consistently purposes of the present paper, it is sufficient to consider
evaluate the entropy density of the overall systé&m. situations such that the first nonvanishing term dominates so

Just to summarize, the reaction rate is not a flux in the usual that the corrections,® are of the simple forfh
sense because it does not appear as a true flux in the balance
equations of mass fractions; instead, it appears as a source term () I (7]

fmass f . . 80 =a3-¢) (38)
there. In spite of this, we have shown how chemical reactions
can be included in the much broader framework of extended
irreversible thermodynamics (EIT). Such a conclusion has beenWhere
reached here under the assumptions that diffusion and other )
transport processes, as well as the heats of reaction, are 3 2_ MG, (39)
negligible. These assumptions simplify the problem since they v 2kT
imply that the internal energy and temperature are constant and
that there is no entropy flux. We have shown that, close to andg, is the reduced speed of trecomponent molecules. In
equilibrium, the nonequilibrium entropy contains a term in the order to find out,™) explicitly, it is necessary to find out some
square of the reaction rate and that our conclusion is comfortedadditional quantities first. As in ref 9, for simplicity we consider
by comparison to the kinetic theoretical results of Shizgal and the simple reaction
co-workers for the case in which linearity between the reaction
rate and the chemical affinity holds (eq 36). We stress again
that this linearity is unrealistic unless when dealing with states
very close to equilibrium. In the future, it would therefore be
of importance to try to extend the approach here presented to
situations including a nonlinear mass action law instead of eq
15.

Note Added in Proof: In the microscopic approach, presented
in section 3 and Appendix A, we have made use of the
assumptions that the first Sonine term yields a reasonable
approximation and that Present’s line-of-centers model can be
applied. Such assumptions have allowed us to perform explicit where ¢, is the relative velocity of the pair of reactively
microscopic calculations (see the explicit expressions for colliding molecules, angt = B, C denotes the component. We
F,(a.e*, T{m}) at the end of Appendix A). It is worth stressing, ~ will make use of the Present line-of-centers cross section
however, that according to Shizgal's microscopic approach (see
Appendix A to ref 15), the nonequilibrium correctiops? are 0*(Crey) =0 Crgpy < Crep* (41)
proportional to the affinity even without need to consider such
assumptions so that eq 37 is still valid. This is in agreement —qd2(1 _ i) . scx
with the reaction flux quadratic dependance in the EIT result 4 €| ey = Trely
(17), which does not rely on those assumptions either.

B+B=C+C (40)

so that the conservation of mass implies thgt= mc = m.
We begin with the definitiors'>

_ —mee,24kT [ M2 3
K ") = j(; m v (4|(T) Crely G*( Crely) dCrer

ekt [ M3 5
Kl(y) ,/(1) € ey (4|(T) Crely 0*( Crely) dcrely

wheree = M, cre,2 and we have assumed for simplicity the same
threshold energy* for the forward and backward reactions.
5. Appendix A This corresponds to assuming that the heat of reaction is
negligible (in this way we are able to concentrate on the problem
Derivation of Eq 29. The problem of how a chemical posed by making use of rather simple equations; if we
reaction affects the distribution functions of the components was considered exothermic or endothermic reactions, we would have
solved, with inclusion of the back reaction and in near- a nonsteady system temperature and its effect on the nonequi-
equilibrium states, by Shizgal and Karplusee also ref 9). librium corrections could become very importaft Also for
Therefore, their derivation will not be repeated here. They made simplicity, we have assumed the steric factors and elastic
use of the ChapmarEnskog method. This approach is valid collision diametersq andd, respectively) to be the same for
provided that the elastic time scale is much less than the reactivethe forward and backward reactions (this does not affect the
time scalé’ It means that reactive collisions are much less conclusions in the present paper and, again, makes equations
frequent than elastic ones and therefore the reaction causes aimpler; in fact, according to microscopical reversibility the
small perturbation on the system under consideration. In refs 8 product qcd® must be the same for both reacti8nsAfter
and 9, this method has been applied to a variety of cross sectiongerforming the integrations,
and levels of approximations. The authors were interested in

the important problem of the nonequilibrium effects on the K. _ﬂze_e*,”
reaction rate. For this reason, they gave general expressions and o 2
performed many evaluations but did not include explicit
expressions for the perturbatiogs® in terms of thermody- K, o) — qd2 oIy 4
namical quantities. Thus, in this appendix we show, for the sake 2 ( kT)
of completeness, that the results in refs 8 and 9 lead to eq 29.
The general form forp,(M, within the ChapmanEnskog We use a notation consistent with that in refs 8 and 9 by

method, is an infinite series of Sonine polynomials. The first introducing

nonvanishing term is a reasonable approximation in some cases,

but in general, additional terms are necessary. The number ofA M = 2n Z(KT)”Z@KO(V) —K (y)) =

necessary terms has been evaluated by comparison of several "

subaproximations in specific cases and depends on the mech- qdz(nk'l)l’z */kT( L€ )
anism and parameters of the reaction considéPééFor the "y 2 kT
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As shown by Shizgal and collaboratérfrom the Chap-
man—Enskog method it is found that the coefficieai$y) that
appear in the single-Sonine approximation (38) are the solutions
to the following set of two equations

{BB} n.a,® + {BC}n.a,“ = ngo,,®
B C) _
nga,® + n.a, @ =0

where, for the case considerad® is given by

1, ¢

L)

2k

and {BB} and{BC} are typical elastic collision integrals of
Sonined! (in the notation in ref 8{ @, W} and{ M, SO},
respectively, wit5,() = (3/, — £,?), which have been performed
for the hard-sphere cross section to yield (see Tables I and Il in
ref 8)

1/2
(8} = ~(BC} = —215) " (42)
The system is easily solved and we find
® _ 1, _Ne| enafl e
a, 2(1 ”B) ge (2 + = T (43)
©_ Y, 8] el €
a, 2(1 ”c) ge (2 += T (44)

In equilibrium @@ = J,@), for the case considered in this
appendix we have (from eqs 41, for both reactions, and 25)
thatng = nc. This implies, according to eqs 43 and 44, that
a;® = 0 anda;,(©) = 0. Therefore, the corrections (38) vanish
and the distribution functions are Maxwellians, as they should
be.

In order to write down eqgs 43 and 44 in terms of the affinity,
namely (see eqgs 14, 40, and 19)

Nc
— o) = —2KTIn-S
Ng

A=2(ug

we note that near equilibrium

nC _
—=e
Ng

A

A2KT
oo

Within this approximation, eqs 43 and 44 become

0= A gl )
&= g (2+kT
a© = _ — /KT

& 4kqu (2 kT)

Obviously, in equilibriumA = 0 and the perturbations vanish,
again as they should.

Fort et al.

Insertion of the above results into eq 38 completes the
derivation of eq 29. For the case considered, we also find that

6*

—€ /kT( )
2 KT

Fe(@e*, T.{m}) —4kTe

and

I:C (q1 6*7 Tv {rny}) -

—e /kT(

4kTe

The results in the present appendix can also be obtained, in
a lengthier way, from the kinetietheoretical approach presented
in ref 8, where use is made of the chemical affinity.

2+l

6. Appendix B
Derivation of Eq 32. From eqgs 31 and 29, it follows that

9
Z € fO_
A

= ¢ () 2 —= ¢(0) 4
3 [dc, £ 9% 2+ [de, 1, %,

S=

kA2
§(O) - ? Z[Fy (q,E*,T,{ my} )]2
Y

The first and second integrals are simplyand,/(kT) = 3/2ny,
respectively (see egs 22, 23, and 39). The third integral is easily
performed by making use of the well-known formula

_15vVm

* 6 7ac}
./(; dCV CV € 16 e

and we immediately find eq 32. A second way to derive eq 32
is by making use of the tabulated value for the integraic,
9 (3, — &, (see the tables in ref 15 or ref 8).
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