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Abstract

Giving continuation to the study of the thermodynamics of nonequilibrium radiation presented
in the preceding article [Physica A 300 (2001) 386], we derive the evolution in time of its
macroscopic nonequilibrium state. The case of a semiconductor sample and the coupling of
radiation and transverse optical phonons is explicitly considered. Excitation of the latter drives
the radiation 4eld out of equilibrium. Under constant excitation, a steady state sets in which
is analyzed. It is shown that the quasitemperature per mode of the radiation 4eld, which has
been de4ned in the preceding paper, can be determined in optical experiments such as Raman
scattering. c© 2001 Elsevier Science B.V. All rights reserved.

Keywords: Nonequilibrium radiation; Informational Statistical Thermodynamics; Radiation
Nonequilibrium Temperature

1. Introduction

The thermodynamics of nonequilibrium radiation is further analyzed by extending
the general theory presented in the preceding article [1], heretofore referred to as
Paper I. Continuing to resort to the MaxEnt-NESOM-based informational statistical
thermodynamics [2–5], we derive the equations of evolution of the basic

∗ Corresponding author. Fax: +34-972-41-80-98.
E-mail address: joaquim.fort@udg.es (J. Fort).

0378-4371/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S 0378 -4371(01)00347 -8



404 A.R. Vasconcellos et al. / Physica A 300 (2001) 403–416

macrovariables, and indirectly of the intensive nonequilibrium thermodynamic vari-
ables, which are the Lagrange multipliers in MaxEnt-NESOM [6–8].

In Section 2 we consider from the outset a particular case, namely a semiconductor
where we pay attention to the radiation which is in interaction with the transverse opti-
cal vibrations (TO phonons). This interaction shall be responsible to drive the radiation
4eld (initially in equilibrium with the TO phonons) out of equilibrium when the TO
phonons are excited by an external source. We derive the equations of evolution for
the populations of photons and TO phonons in the framework of the nonlinear quan-
tum kinetic theory that is founded on the MaxEnt-NESOM [6–10]. The macroscopic
(nonequilibrium thermodynamic) state of both systems can be completely and equiva-
lently characterized by the MaxEnt-NESOM Lagrange multipliers associated with the
populations, which can be rede4ned in terms of nonequilibrium temperatures (qua-
sitemperatures) per mode for photons [1] and phonons [11,12].

The photons of the black-body radiation and the TO phonons, due to the bilin-
ear coupling of their transverse electric 4elds (radiation 4eld and transverse polariza-
tion 4eld, respectively), form particular hybrid excitations called polaritons (see, for
example, Ref. [13]), the so-called upper- and lower-branch polaritons. They can be
studied via optical experiments, for example the Raman scattering (see, for example,
Chapter 1 in Ref. [13]). In Section 3 we propose the experimental determination of
the quasitemperature of the nonequilibrium radiation by means of the analysis of the
Raman spectrum of scattering by polaritons.

2. System and its equations of evolution

Let us consider an inverted-band polar semiconductor (e.g. GaAs, CdS, III-nitrides,
etc.), under the action of infrared-laser radiation which drives the TO phonons away
from equilibrium, and also in contact with a thermal reservoir at temperature T0. We
take the system Hamiltonian

Ĥ = Ĥ 0 + Ĥ
′
; (1)

where

Ĥ 0 = Ĥph + Ĥ TO + Ĥ S ; (2)

Ĥ
′
= Ĥ

′
ph−TO + Ĥ

′
ph−S + Ĥ

′
TO−S + Ĥ

′
TOf + Ĥ

′
res ; (3)

with

Ĥph =
∑
→
k

˝�→
k

(
a†→
k
a→
k

+
1
2

)
; (4)

Ĥ TO =
∑
→
q

˝!→
q

(
b†→
q
b→
q +

1
2

)
(5)

for the Hamiltonians of the free subsystems of photons and TO phonons, and Ĥ S is the
Hamiltonian of the other subsystems in the sample (electrons in Bloch bands, lattice
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vibrations other than the TO ones, etc.) whose detail is not needed here. The wavevector
→
q runs over the Brillouin zone, �→

k
and !→

q are the photons and TO phonons energy

dispersion relations, and a→
k

(
a†→
k

)
; b→

q

(
b†→
q

)
; the corresponding annihilation (creation)

operators. H ′ contains all of the interactions, where that between TO phonons and the
radiation 4eld is given by

Ĥ
′
ph−TO =

∑
→
q

W→
q

(
a→
q − a†

−→
q

)(
b→
q − b†

−→
q

)

+
∑
→
k

→
q

V→
k

→
q

(
a→
k
− a†

−→
k

)(
b→
q − b†

−→
q

)(
b−→

k −
→
q − b†→

k +
→
q

)
; (6)

where W→
q and V→

k
→
q are the matrix elements; this radiation–TO phonons interaction

is composed of two terms: the 4rst one is the interaction of the radiation electric
4eld with the dipolar polarization of TO phonons, and the second one is that with

the quadrupolar polarization. We recall that the
→
q -wavevector amplitude of the electric

4eld of the radiation is (for example Ref. [14])

�
(→
q
)

= i
√

2�˝�→
q

(
a→
q − a†

−→
q

)
(7)

and the
→
q -mode TO-polarization is

PTO
(→
q
)

= − i e∗
√

˝
2�→

q

(
b→
q − b†

−→
q

)
; (8)

where e∗ is the Szigetti eKective charge [15]. The other contributions in Eq. (3) are,
respectively, the interaction of the radiation with the degrees of freedom of the sys-
tem other than the TO phonons, the interaction of the TO phonons with the exciting
source, and 4nally the interactions with the thermal reservoir (the latter is responsi-
ble to drive the system to 4nal equilibrium at temperature T0 after switching oK the
pumping source). We do not need these terms here in explicit form.

We take as the MaxEnt-NESOM basic sets of variables for the two subsystems of
interest{

N̂→
k
; �̂→q

}
;
{
F→
k
(t); ’→

q (t)
}
;
{
N→
k
(t); �→q (t)

}
; (9)

which are the operators for the number of photons in state k̃ and of TO phonons
in state (mode) q̃, the corresponding Lagrange multipliers, and 4nally the macrovari-
ables (de4ning the nonequilibrium thermodynamic space of states) consisting of the
distribution functions of photons and TO phonons.

Furthermore, we recall that the Lagrange multipliers (i.e., the intensive nonequilib-
rium thermodynamic variables in IST) can be rede4ned in terms of quasitemperatures
per mode for photons [1] and for TO phonons [11,12] by introducing

F→
k
(t) =

˝�→
k

kBT ∗→
k
(t)
; ’→

q (t) =
˝!→

q

kBT ∗→
q TO

(t)
: (10)
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The MaxEnt-NESOM nonequilibrium statistical operator is the one of Eq. (2) in
paper I but where now the informational-statistical entropy operator is

Ŝ(t; 0) = (t) +
∑
→
k

F→
k
(t)N̂→

k
+
∑
→
q

’→
q (t)�̂→q + !̂(t; 0) ; (11)

where, we recall, !̂ contains the contributions from all of the subsystems other than the
radiation and TO phonons (for our purposes, we can consider them as characterized
by a distribution in equilibrium with the thermal reservoir at temperature T0).

After a straightforward calculation, one 4nds that

N→
k
(t) =Tr

{
N̂→

k
"�(t)

}
=Tr

{
N̂→

k
L"(t; 0)

}
=
[
exp{F→

k
(t)} − 1

]−1
; (12)

�→q (t) =Tr
{
�̂→q "�(t)

}
=Tr

{
�̂→q L"(t; 0)

}
=
[
exp

{
’→
q (t)

}
− 1
]−1

; (13)

recalling that the average value with the statistical operator and the one calculated
with the auxiliary one L" of Eq. (6) in paper I coincide only for the basic variables,
as are the two above. With the interpretation given by Eq. (10), the populations of
Eqs. (12) and (13) take the form of Planck-like distributions with an eKective temper-
ature (quasitemperature) for each mode.

2.1. The equations of evolution

The equations of evolution are

d
dt
Q(t) =Tr

{
1
i˝ [P̂; Ĥ ]"�(t)

}
= J (0)(t) + J (1)(t) + �(t) ; (14)

where Q and P̂ stand for the populations of Eqs. (12) and (13), and the operators N̂→
k

and �̂→q , respectively. Eq. (14) is the Heisenberg equation of motion for P̂ averaged
over the nonequilibrium ensemble which, as indicated, can be rewritten in terms of

J (0)(t) =Tr
{

1
i˝ [P̂; Ĥ 0] L"(t; 0)

}
; (15)

J (1)(t) =Tr
{

1
i˝ [P̂; Ĥ

′
] L"(t; 0)

}
; (16)

�(t) =Tr
{

1
i˝ [P̂; Ĥ

′
]"′�(t)

}
; (17)

where Ĥ 0 and Ĥ
′
are those of Eqs. (2) and (3), and the expression "�(t) = L"(t; 0)+"′�(t)

has been used, separating out the relaxation-free (“instantaneously frozen”) part L" and
the one accounting for the dissipative and pumping processes and irreversible evolution
of the system, i.e., "′� [6–10].

In the present case J (0) and J (1) are null, and the collision operator, which admits an
expansion in an in4nite series of partial collision operators in the MaxEnt-NESOM-based
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kinetic theory [9], is taken in the so-called second-order approximation in relaxation
theory (which is the Markovian form of the equations of evolution, valid in the weak
coupling situation we are considering [16]). Hence,

�(t) � J (2)(t) =
(

1
i˝

)2 ∫ t

−∞
dt′e�(t

′−t)G(t′; t) ; (18)

where

G(t′; t) =Tr{[H ′(t′ − t)0; [Ĥ
′
; P̂]] L"(t; 0)} ; (19)

a double commutation operation, with subindex nought indicating evolution in interac-
tion representation (i.e., under the action of Ĥ 0 alone).

Performing the calculations we obtain that
d
dt
N→
k
(t) =

∑
→
q

J→
k

→
q (t) − 1

&
r
→
k

[
N→
k
(t) − Neq

→
k

]
; (20)

d
dt
�→q (t) = I→q −

∑
→
k

J→
k

→
q (t) − 1

&
TO

→
q

[
�→q (t) − �eq→

q

]
; (21)

where

J→
k

→
q (t) =−2�

˝2 |W→
k
|2
[
N→
k
(t) − �→q (t)

]
(
(
�→
k
− !→

q

)
(→
k

→
q

− 2�
˝2

∣∣∣V→
k

→
q

∣∣∣2 (
(
�→
k
− !→

q − !→
k −

→
q

)

×
{
N→
k
(t)
[
1 + �→q

] [
1 + �→

k −
→
q

]
−
[
1 + N→

k
(t)
]
�→q (t)�→

k −
→
q (t)

}

− 2�
˝2

∣∣∣V→
k

→
q

∣∣∣2 (
(
�→
k

+ !→
q − !→

k +
→
q

)

×
{
N→
k
(t)�→q (t)

[
1 + �→

k +
→
q (t)

]
−
[
1 + N→

k
(t)
] [

1 + �→q (t)
]
�→
k +

→
q (t)

}
:

(22)

In Eqs. (20) and (21) the last term on the right-hand side has been written in a
phenomenological way, by introducing the relaxation times &

r
→
k

and &
TO

→
q , to account

for the relaxation to equilibrium as a result of the interactions with the other subsystems
of the sample via the processes corresponding to the terms in Eq. (3) which is diKerent
from Ĥ

′
ph−TO of Eq. (6), the latter being responsible for the term containing J→

k
→
q in

Eq. (22). The superscript eq indicates the distribution in equilibrium at temperature T0,

and I→q the rate of production of TO phonons in mode
→
q generated by the action of

the external exciting source.
Finally, we notice that the scattering operator in the Markovian limit in Eqs. (20),

(21) can be recognized—in this particular case—as the result of applying the golden
rule of quantum mechanics averaged over the MaxEnt-NESOM nonequilibrium
ensemble.
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The intensive nonequilibrium thermodynamic variables (the MaxEnt-NESOM
Lagrange multipliers) satisfy equations of evolution which are derived from those in
Eqs. (20), (21), once we take into account Eqs. (12) and (13), whose left-hand sides
become

d
dt
N→
k
(t) = − N→

k
(t)[1 + N→

k
(t)]

d
dt
F→
k
(t) ; (23)

d
dt
�→q (t) = − �→q (t)

[
1 + �→q (t)

] d
dt
’→
q (t) (24)

and here and on the right-hand side we use Eqs. (12) and (13) for expressing the
populations in terms of the Lagrange multipliers alone.

2.2. The polariton states

Due to the bilinear term in Eq. (6), accounting for the coupling of the radiation
4eld with the dipolar 4eld of the TO phonons, photons and TO phonons form hybrid
excitations known as polaritons [13]. The diagonalization of this part of the Hamilto-
nian, together with Hph and HTO follows from the rotation-like transformation to new
operators of upper- and lower-branch polaritons, namely

)→
q +

= cos *→
q a→

q + sin *→
q b→

q ; (25)

)→
q− = − sin *→

q a→
q + cos *→

q b→
q ; (26)

with angle *→
q given by

*→
q =

1
2
tan−1

|W→
q |

|˝�→
q − ˝!→

q |
; (27)

where, we recall,
→
q runs over the Brillouin zone. Their eigenfrequencies are given by

!2→
q± =

1
2

(
�2→
q

+ !2→
q

)
±
√

1
4

(
�2→
q

+ !2→
q

)2
− 1
˝2 |W→

q |2 : (28)

At the crossover point
→
q co (degeneracy) where �→

q =!→
q , the angle *→

q is �=4
and the hybrid excitation is 50% radiation vibration and 50% mechanical (and also
dipolar) vibration. For decreasing values of q below the crossover qco, the lower-branch
polariton is predominantly purely radiation in character, while for increasing values of
q above the crossover qco, it becomes predominantly a TO vibration. Fig. 1 illustrates
the frequency dispersion relation of Eq. (28) for the case of GaP.

We also notice that the populations are related by the expressions:

-→
q−(t) = cos2 *→

q N→
q (t) + sin2 *→

q �→q (t) ; (29)

-→
q +

(t) = sin2 *→
q N→

q (t) + cos2 *→
q �→q (t) ; (30)
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Fig. 1. Upper (!+) and lower (!−) branches of the polariton frequency dispersion relation in GaP. The
horizontal lines correspond to near dispersionless LO phonons (full horizontal line) and to the nonhybridized
relation for the TO phonons (dashed line) [adapted from Ref. [13]].

where, as noticed, *→
q → 0 for

→
q → 0 (q�qco) and *→

q →�=2 for high values of
q (q�qco),

-→
q∓(t) =Tr

{
)†→
q∓
)→
q∓ L"(t; 0)

}
(31)

and, evidently, their equations of evolution are the corresponding linear combinations
of those of the photon populations, Eq. (20), and TO-phonon populations, Eq. (21),
but after neglecting the 4rst term on the right-hand side of Eq. (22), i.e., the one
responsible for the formation of the polariton.

From the above analysis we can see that in an experiment testing the region of
low values of q (q¡qco) the lower-branch polariton would be mainly described by
the radiation 4eld, while the upper-band polariton would be almost a purely lattice
vibration. For higher values of q (q¿qco) these features become inverted.

2.3. The steady state

Under conditions of continuous constant excitation, after a rapid transient has elapsed,
a steady state sets in, then dN→

k
(t)=dt= 0 and d�→q (t)=dt= 0 in Eqs. (20) and (21),

and we proceed to its analysis. For that purpose, and in order to simplify matters,
we are going to restrict the conditions imposed on the system by assuming the same
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intensity of the pumping source acting on each TO-phonon mode, i.e., I→q = I for all
→
q in Eq. (20). On the basis of this, and also of the energy redistribution among the
modes due to the interaction with the other subsystems in the sample, we can safely
assume that the TO phonons have achieved internal thermal equilibrium (however, in
nonequilibrium conditions), i.e., that the quasitemperature is the same for all modes,
T ∗→
q

=T ∗
TO in this steady state, and then

�ss→
q

= (exp[˝!→
q =kBT

∗
TO] − 1)−1 : (32)

With this result in mind, we can rearrange Eqs. (20), (21) to obtain—after we take as
zero the time derivatives and perform some algebra—compact and interesting expres-
sions of the form

LN
TO
→
k

− Nss
→
k

&→
k

−
Nss

→
k
− Neq

→
k

&
r
→
k

= 0 ; (33)

I −
LN
TO
→
q − N ss

→
q

&→q
−
�ss→
q
− �eq→

q

&
TO

→
q

= 0 ; (34)

where

1
&→
k

=
2�
˝2

1

LN
TO
→
k

∑
→
q

∣∣∣V→
k

→
q

∣∣∣2 �ss→
q
�ss→
k +

→
q

(35)

×
[
(
(
�→
k

+
→
!→
q −!→

k+
→
q

)
exp

{
0TO˝!→

q

}
+(
(
�→
k
−→
!→
q −!→

k+
→
q

)]
; (36)

the same for &→q through the exchange k̃ ↔ q̃; and we have de4ned

LN
TO
→
k

≡
(
exp

[
0ssTO˝�→

k

]
− 1
)−1

; (37)

that is, what would be the population of the photons at the quasitemperature of the
TO phonons, since 0ssTO = 1=kBT ∗

TO (case of mutual thermalization).
From Eq. (33) we obtain that

Nss
→
k

=
&→
k

&→
k

LN→
k

+
&→
k

&
r
→
k

N eq
→
k
; (38)

where

1
&→
k

=
1
&→
k

+
1
&
r
→
k

(39)

and from Eq. (34) and using Eq. (37) it follows that

�ss→
q

= I&
TO

→
q + �eq→

q
+
&
TO

→
q

&→q

[(
&→q
&→q

− 1

)
LN
TO
→
q +

&→q
&
r
→
k

N eq
→
k

]
� I&

TO
→
q ; (40)
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the approximate value being valid for suQciently high values of I , noticing that for
typical semiconductors at room temperature �eq→

q
¡ 1; and under the assumption that

&
r
→
k
�&→q

(
then &→q � &→q

)
, what is consistent with I

(
and then �ss→

q

)
being large.

We notice now that to take the same quasitemperature for all the modes is equivalent
to use from the outset a contracted description that takes as macrovariable for the TO
phonons their energy, i.e.,

ETO(t) =
∑
→
q

˝!→
q �→q (t) ; (41)

with an associated Lagrange multiplier 0(t) = 1=kBT ∗
TO(t) (this is a manifestation of the

contraction of description in Bogoliubov’s sense [17,18]). Hence, multiplying Eq. (39)

by ˝!→
q and summing over

→
q ; the equation for the energy in the steady state is

EssTO � I
∑
→
q

˝!→
q &TO→

q ≡ E0 : (42)

An Einstein model of dispersionless phonons, i.e., !→
q =!0 independent of

→
q , is a

good one for optical phonons, mainly in the case of small values of q to be analyzed
in the following section. Then,

EssTO =N˝!0�ss0 � E0 ; (43)

where

�ss0 = (exp[˝!0=kBT ∗
TO] − 1)−1 (44)

and N is the number of modes. From Eqs. (41)–(43) we obtain, if ˝!0= LE0�1, that

1
kBT ∗

TO
� 1
˝!0

ln
[
˝!0

LE0
+ 1
]
� 1

LE0
; (45)

where LE0 =E0=N is the energy pumped by the external source per mode. Moreover,
using Eq. (40) for the dispersionless phonons,

LE0 =
E0

N
= I˝!0&TO ; (46)

with

&TO =
1
N

∑
→
q

&
TO

→
q : (47)

Finally, we have a value for the TO phonons quasitemperature, namely

T ∗
TO = I&TO*E ; (48)

where *E is the Einstein temperature, de4ned by kB*E =˝!0; which in typical semi-
conductors is of the order of 400–500 K, and the relaxation time &TO is in the tenfold
picosecond scale. Therefore, we can estimate that for the TO-phonon quasitemperature
to be, say, twice the Einstein temperature (order of 1000 K), an eKectively absorbed
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power of roughly 1:5×10−9 W per mode would be necessary. Let us consider the case
of GaAs and the set of modes of low wavevectors (say q¡ 105 cm−1), those involved
in the Raman scattering of light to be considered later on: since the number of these
modes is roughly 3× 103 per cm3, then the total eKective power would need to be of
the order of 50 kW per cm3 of the sample.

One way to transfer energy to the TO phonons is by illumination with infrared light;
another way, of an indirect type, is the excitation of the electron system (creation of
the so-called “hot carriers”) through the action of strong laser pulses or intense electric
4elds. The highly excited electrons relax the energy received from the pumping source
to the, mainly, optical phonons heating them up.

Finally, under the condition that &
r
→
k
�&→

k

(
and then &→

k
� &→

k

)
; Eq. (37) tells us

that

Nss
→
k
� LN→

k
=
(
exp

[
˝�→

k
=kBT ∗

TO

]
− 1
)−1

; (49)

implying a mutual thermalization; however, in nonequilibrium conditions, of the radia-
tion 4eld in the steady state with the TO-phonon system, their macroscopic state being
characterized by a common quasitemperature T ∗

TO: Hence, the nonequilibrium temper-
ature is the same for all modes (equivalent to the case of the truncated description of
Section IIIa in paper I). This is a consequence of the restrictions we have imposed
on the way to characterize the macroscopic steady state of nonequilibrium radiation in
interaction with transverse optical lattice vibrations.

3. Experimental characterization

Raman scattering by the excited steady-state lower-branch polaritons is possible,
and the resulting spectrum can be used to “measure” the quasitemperature of these
excitations. We recall the results of Section 2.1, according to which at low values
of wavenumber (q¡qco; in a near forward-scattering experiment), the excitation is
predominantly of the radiation character and we can determine the quasitemperature of
the photons. On the other hand, for higher values of wavenumber (q¿qco; in a mean
forward scattering experiment), the excitation is predominantly of a TO-vibrational
character and we can determine the quasitemperature of the TO phonons.

The Raman cross section can be expressed as the frequency and wavenumber-
dependent density–density correlation function of the quasiparticles involved in the
collision process (in this case the lower-branch polaritons interacting with the laser
radiation). Through the Tuctuation–dissipation theorem, such a correlation can be re-

lated to the dielectric function �(
→
q ; !) of the system, namely, the diKerential cross

section is

d22
d! d�

=
C

1 − exp[ − 0˝!]
Im �−1

(→
q ; !

)
; (50)
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where C is a constant, ˝!=˝!L − ˝!S is the energy transfer and ˝q̃=˝k̃L − ˝k̃S
the momentum transfer in the scattering event: k̃L; !L; k̃S and !S are the wave-
vector and frequency of the laser light (incident photons) and of the scattered photons
(k̃L and !L are 4xed by the lasing machine, !S is measured by the detection apparatus,
and k̃S is determined by the experimental geometry which 4xes the scattering angle)
[19]. Moreover, 0−1 = kBT ∗

q̃ is the reciprocal of the quasitemperature of the polariton
in mode q̃.

Two bands are observed in the spectrum, with frequencies !S =!L + !→
q− and

!S =!L − !→
q− (the so-called anti-Stokes and Stokes bands), corresponding to pro-

cesses with absorption or emission, respectively, of a lower-branch polariton in the
scattering event. Let us call IAS and IS the band intensities (i.e., their areas in fre-
quency space).

It follows that, since the polaritons are boson-like particles, IAS is proportional to

the population of the lower-band polaritons in mode
→
q ; and IS is proportional to this

population plus 1.
Hence,

IS
IAS

=
-ss→
q−

+ 1

-ss→
q−

= 1 +
1

-ss→
q−

; (51)

but, we recall, for q¡qco we have -ss→
q−

�Nss
→
q

and for q¿qco it holds that -ss→
q−

� �ss→
q
.

Therefore, for q�qco

N ss
→
q
� -ss→

q− =
IAS

IS − IAS
; (52)

but because of Eqs. (12) and (10)

T ∗→
q

=
˝�→

q

kB

1
ln(IS=IAS)

; (53)

with �→
q � !→

q−; and thus a “measurement” of the quasitemperature of the nonequilib-
rium radiation can be obtained from the experimental data; we can say that the Raman
scattering experiment acts like a “thermometer” (of course, with systems in equilibrium
what results is the value of the equilibrium temperature of the system, which is that
of the reservoir).

In Fig. 2 it is shown that the frequency dispersion relation for polariton branches
(full lines), and the dots indicate the values obtained from the scattering spectrum
[19]. This is the case of tetragonal BaTiO3 which possesses three families of optical
phonons; thus the presence of the four curves of polariton states, since the radiation
couples with the three TO-phonon branches. It can be noticed that the upper-branch
polaritons (!+) do not contribute to Raman scattering, which is forbidden because
the conservation of energy and momentum in the collision event is not possible. This
experiment corresponds to the case of nonexcited polaritons, i.e., I = 0 in our equations.

In Fig. 3 we can observe Raman spectra at room temperature for diKerent values
of the scattering angle *, corresponding to the experimental geometries which produce
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Fig. 2. Polariton frequency dispersion curves in tetragonal BaTiO3; having three optical-phonon branches.
Dots are from Raman scattering experiments (adapted from Ref. [19]).

the data at the wavenumbers indicated by arrows in Fig. 2. Here, only the anti-Stokes
bands are shown, the Stokes ones are on the negative Raman frequency shift; as we
have seen the ratio of intensities of them (the ratio of areas enclosed by the bands
or, approximately, the ratio of the peak values when they can be approximated by a
Lorentzian) gives information on the populations, and thus on the quasitemperatures
of the polariton modes. In the case of the experiment of Ref. [19] this is simply the
temperature in equilibrium (since I = 0).

4. Concluding remarks

The general theory for the statistical thermodynamics of nonequilibrium radiation
in matter, presented in the preceding article, has been complemented with the study
of the irreversible evolution in time of the nonequilibrated populations of photons.
We have considered the particular case of polar semiconductors and the interaction of
the black-body radiation with the transverse optical phonons. This is particularly quite
an interesting system since both, photons and TO phonons, form a hybrid excitation
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Fig. 3. Raman spectra in near forward scattering by polaritons in BaTiO3 at room temperature. Here * is
the scattering angle, which 4xes the wavenumbers (momentum transfer) indicated by the arrows in Fig. 2.
The numbers indicated at the top of the bands are the Raman frequency shifts in cm−1 at the peak value
(adapted from Ref. [19]).

consisting of the so-called polaritonic waves, with polaritons being the corresponding
quantized pseudoparticles. Hence, the TO phonons can be excited by the action of an
external pumping source, e.g. infrared radiation from a laser machine, and then to have
excited (nonequilibrated) polaritons. The low-frequency polaritons are predominantly
composed of electromagnetic waves and then we can have experimental information
on the nonequilibrated photons.

Quite a convenient type of experiment is inelastic scattering of light, or Raman scat-
tering by polaritons. From the relation between the intensity of Stokes and anti-Stokes
bands, it is possible to determine the population of polaritons, which is practically
the population of photons in the low-frequency side of the lower polariton branch,
as already noticed. From these data it can be calculated [cf. Eq. (53)] the quasi-
temperature for the diKerent radiation modes, and in that way to have a “measurement”
of such a quantity.

In conclusion, articles I and II attempt to provide an extensive treatment of the
nonequilibrium (irreversible) thermodynamics of radiation. This has been done in terms
of the seemingly promising statistical approach consisting of the MaxEnt-NESOM-based
informational statistical thermodynamics.
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