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A. THERMODYNAMIC DERIVATION

Before discussing some specific applications [1], let us derive the most basic
necessary equations. The second law of thermodynamics has strong implications on the
possible equations driving the dynamics of physical and biological systems. In
Extended Irreversible Thermodynamics [2], one assumes that the entropy density s
depends on the classical variables and also on the dissipative fluxes. Therefore, in
diffusive systems

s=s(nJ), (1)

where n is the number density of particles and J the particle number flux. The
entropy differential of any process is thus

ds=-Lan-2 jqj, )
T Tn
where T is the temperature, 4 is the chemical potential per particle and & is a

scalar (which may depend on n and T but is independent of J at this order of
approximation). On the other hand, the particle balance equation is obviously

on = =
—=-V-J+F(n), 3
Py (n) 3)

where F(n) is the number of particles (or individuals, in biological applications)
generated per unit time and volume (or per unit area, in 2-dimensional systems).

From Egs. (2) and (3), and comparing with the balance law for the entropy,
namely

§+V.J' =g,,, 4)

we find for the entropy production rate per unit volume of the system (with

JP== %j as usual [2])
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> T ot T

where we have assumed that the temperature is uniform for simplicity. Now we
note that the physical volume contains not only the particles (or individuals), which is
all we have so far considered, but also the medium (or environment) which is necessary
to generate new particles. This need follows simply from the principle of mass
conservation. According to the second law, what must be semipositive-definite is the

total entropy production, namely o, =0, , +0 i.e. the sum of the entropy

syst env ?

5 :_1.{%6,64]_&, )

production of both subsystems (and not each of them separately). Thus we have

d |z aJ | uF(n)
o,=——|Vu+a—|-——+0,,20 . 6
T T |: # 5!] T env ( )
There are two processes: particle diffusion and particle generation (the latter is
called reproduction in biology). Each physical process must have a semipositive-
definite entropy production rate,

J |- aJ
GdW:_F'l:V#+aE:|ZO’ (7)
pFn)
————=20. 8
w T (8)

The simplest way to ensure Eq. (7) is that the bracket is equal to L J,with L a
proportionality constant. This yields the Maxwell-Cattaneo equation
r§1+J=—Dﬁn, )
ot
where 7=a/L is called the relaxation time and D =(du/dn)/L the diffusion
coefficient. Combining Eqgs. (9) and (3), we obtain the so-called hyperbolic reaction-
diffusion equation
o’n  on =5 OF (n)
T—+—=DVn+ F(n)+1—=. 10
o’ o (=) ot (10)

Thermodynamics is a very powerful way to derive the possible forms of the
transport equations, and can be applied to any system, either physical or biological, and
whatever the microscopic mechanism of motion at work.

B. COMPARISON TO OBSERVATIONS

In order to compare to observations, we need a prediction for the diffusion
parameters D and 7, in terms of directly measurable quantities. A random-walk
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approach yields the usual result D =< A’ > /(4T) (in two dimensions), where <A’ > is
the mean square displacement of the particles per jump and 7" the mean time interval
between successive jumps, and [3]

T=E. (11)

Egs. (10)-(11) have front solutions, which are nothing but invasion waves, i.e.
profiles of population density n(r —ct) with a constant S-shape. In one side of the front,
towards which it moves, the system is in the state n =0 (corresponding to an empty
environment). In the other side, which has been already swept by the front, the system is
in the final state n=n_, (corresponding to saturated population density). Fronts

satisfying Egs. (10)-(11) move at the constant speed [1]
2~aD
== (12)

Py iosd

C
1+

where a = d—F

dn|,_,

B.1. ANTHROPOLOGY

The first comparison of Eq. (12) to observations was made for the Neolithic
transition in Europe [3]. Archaeological data (circles in Fig. 1) show that agriculture
arose in the Near East about 9,000 years ago, from it gradually spread over Europe at a
speed of 1.0+0.2 km/yr. Eq. (12) predicts a speed consistent with this range, whereas
previous models predicted a higher speed (Fig. 1). The delay time T appearing in Eq.
(12) is the mean generation time in this case.
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Fig. 1 The Neolithic transition in Europe [3]. Data were first collected by
Ammerman and Cavalli-Sforza. Distances are measured from Jericho (the presumed
centre of diffusion). Dates are in years before present. The full line is a linear regression
fit to the data points. The dotted line is a least-square fit with slope computed from Eq.
(12), and the dashed one from Fisher’s model [Eq. (12) with 7=0].

B.2. BIOLOGICAL INVASIONS

Eq. (12) has been also compared to data from other population invasions [4],
yielding better agreement than the parabolic or Fisher approximation (Fig. 2).

neolithic ? 7777 parabolic speed
RS hyperbolic speed
grey squirrel I observed speed
muskrat
butterflies
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house finch
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0 10 20 30 40 5 60 70 80
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Fig. 2 Theoretical versus observed speeds for several biological invasions [4].
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B.3. SPREAD OF VIRUS INFECTIONS

Eq. (10) can be generalized to cases in which several species coexist. One such
example, for which it has been possible to understand previously-unexplained
experimental data, is the cases of virus infections [5]. Fig. 3 presents an example of the
comparison between theory and experiment. No free or adjustable parameters at all have
been used, whereas previous approaches used three adjustable parameters and equations
which did not take into account the effect of the relaxation time 7 (i.e., they considered
7 =0). In this case, this effect is due to the time it takes for a virus to reproduce and kill
a host cell, after entering into it. Once a cell is killed, the progeny of the virus leave it
and diffuse until they reach new cells. Then, the cycle begins again. Thus, the front
spreads.
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Fig. 3 Theory (lines) versus experiment (open circles with error bars) for the speed of virus
infections [5]. Predictions are shown for two extreme values of a kinetic rate parameter k ; [which has
a role similar to F(n) in Eq. (3)], as determined from independent experiments. fis the asymptotic
concentration of cells relative to its maximum possible value B ,,,,, which in turn depends on the
nutrient concentration used in the experiment .

B.4. ECONOMICS

Several other extensions of the basic Eq. (10) are possible. A discrete approach
has been used to explain the income distribution function from the intergenerational
income transmission probabilities in several countries [6].
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B.5. UNEXPLAINED EXPERIMENTAL OBSERVATIONS

The speed of forest colonizations and of some nervous impulses are examples of
experimental observations of fronts with, still today, await theoretical explanation.
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