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Abstract

We review the recent theoretical progress in the formulation and solution of the front speed
problem for time-delayed reaction–diffusion systems. Most of the review is focused on
hyperbolic equations. They have been widely used in recent years, because they allow
for analytical solutions and yield a realistic description of some relevant phenomena. The
theoretical methods are applied to a range of applications, including population dynamics,
forest fire models, bistable systems and combustion wavefronts. We also present a detailed
account of successful predictions of the models, as assessed by comparison to experimental
data for some biophysical systems, without making use of any free parameters. Areas where
the work reviewed may contribute to future progress are discussed.
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1. Introduction

Wavefronts are ubiquitous in Nature. Some physical examples are combustion flames,
superconducting, crystallization and solidification fronts. Some biological examples are the
invasions of biological populations, the waves of advance of advantageous genes, the growth
of virus plaques and of cancer tumours, the propagation of epidemics, etc.

Wavefronts are special solutions to the dynamics of systems with several equilibrium
states. Wavefronts (or fronts for short) are usually defined as solutions such that they travel
with constant shape and connect an unstable (initial) and a stable (final) state. In practice, this
means simply that before the propagation of the front the system is in an unstable state, and
after the front has swept along the system, its state is stable. The relevant variable depends on
the system and process one wishes to describe. For example, in range expansions of biological
populations a relevant variable is the population density. In the propagation of some flames,
this role is played by the temperature, etc.

The simplest, most well-known system with wavefront solutions can be introduced as
follows. Let n stand for the number density of a chemical or biological species. We will
consider, for the time being, the very simple case of a one-dimensional (1D) system (e.g. we
may consider a chemical species in a very thin wire, or a biological species living along a
coast). Then, n is the number of particles or individuals per unit length. According to Fick’s
law, the diffusion flux (measured in number of particles or individuals that cross a point of the
1D system per unit time) is

J = −D
∂n

∂s
, (1)

where s is the space coordinate and D is the diffusion coefficient. On the other hand, the mass
balance equation reads

∂n

∂t
= −∂J

∂s
+ F(n), (2)

where F(n) is the net number of particles (or individuals) that appear per unit time and length
(recall that we are dealing with 1D systems for the moment), and t is the time. The interpretation
of this equation is straightforward: integrating it over a subsystem of length L, we obtain simply
that the net change of particles (individuals) is equal to the net number appearing per unit time
because of the reactive (reproductive) process, minus the net number leaving the system per
unit time. Combining the previous two equations yields

∂n

∂t
= D

∂2n

∂s2
+ F(n), (3)

which is the simplest possible equation with wavefront solutions. This equation has been
applied to the spread of advantageous genes [1], combustion flames [2], dispersions of
biological populations [3], epidemic models [4], etc.

The mass balance equation (2) is untouchable in the present context, because of the
interpretation we have presented below it. Its status is in sharp contrast to that of equation (1),
which is only an approximation to physical reality. It is a linear relation between cause
(a nonhomogeneous density, ∂n/∂s �= 0) and effect (a flux of particles or individuals, J �= 0).
This is indeed intuitively reasonable, because it predicts a vanishing effect (J = 0) if the
corresponding cause disappears (∂n/∂s = 0). However, there are more reasonable equations
that also have this property. In fact, there should be a time interval between cause and effect.
From this perspective, one may expect equation (1) to be replaced by

J (x, t + τ) = −D
∂

∂s
n(x, t), (4)
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where τ corresponds to the time delay between cause and effect. The well-known fact that
linear flux–force dependences (such as Fick’s law) are a special, limiting case of time-delayed
equations [5] was first noticed by Maxwell [6].

To take another example, the 3D Fourier heat conduction equation

�q(�x, t) = −λ �∇T (�x, t) (5)

predicts that a temperature gradient �∇T causes the instantaneous appearance of a heat flux �q
(λ is the thermal conductivity, �x is the position vector and t is the time). This physically
unpleasant property (instantaneous relation between cause and effect) has been stressed
repeatedly. Half a century ago, authors such as Cattaneo [7] and Vernotte [8] proposed to
avoid it by letting the heat flux to be time-delayed with respect to the temperature gradient, i.e.
a relationship of the form

�q(�x, t + τ) = −λ �∇T (�x, t), (6)

where τ plays the role of a delay or relaxation time. This equation is the 3D conductive
analogue to the 1D diffusive equation (4).

In 3D diffusion phenomena, �q in equation (6) (or J in equation (4)) is replaced by the
diffusion flux �J , T by the particle concentration n, and λ by the diffusion coefficient D,

�J (�x, t + τ) = −D �∇n(�x, t). (7)

Time-delayed diffusion has been applied to turbulence [9], propagation of light in turbid
media [10], diffusion in glassy polymers [11], photon emission from stellar atmospheres [12],
Taylor dispersion [13], radiative transfer [14], etc.

In systems where there is a reactive in addition to a diffusive process, Fickian diffusion
leads to parabolic reaction–diffusion (PRD) equations. Equation (3) is the simplest example.
Such equations will be derived in section 2 as a special case. However, as first noted by
Kac [15], PRD equations are a special case of reaction–diffusion equations, which are based
on the instantaneous diffusive effects mentioned above. This unphysical feature can be avoided
by making use of hyperbolic reaction–diffusion (HRD) equations. HRD equations have been
very recently applied to forest fire models [16], chemical systems [17,18], crystal growth and
solidification fronts [19, 20], thermal combustion [21], human population invasions [22–24]
and the spread of virus infections [25]. The most important theoretical prediction is the speed
of the wavefronts, which may be compared to the speed measured experimentally.

With some variations [26], hyperbolic equations have been considered to derive the speed
of fronts. There are many interesting related problems, such as Turing instabilities [27], spiral
waves, patterns, etc. Our review below is focused on the theoretical foundations and methods of
solution of the wavefront speed problem, as well as on the specific phenomena mentioned in the
previous paragraph—insofar as they pose experimental situations where this problem arises.
In all instances where direct comparison between quantitative predictions and experimental
values has been performed, it will reported in detail.

Section 2 contains some derivations of the HRD and other fundamental equations. In
section 3, we present the most successful theoretical methods which have been applied to
the front speed problem for HRD equations. Some applications are reviewed in section 4. The
usefulness of the work done in recent years in analysed in sections 6–8. These sections are
devoted to the comparison between theoretical predictions and experimental data for several
systems of biophysical interest. Finally, section 9 contains a critical discussion and an outline
of likely areas of future progress in the field.
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2. Microscopic and phenomenological derivations

2.1. Isotropic random walks with reaction

Isotropic random walks in 1D are probably the simplest microscopic model which has been
used to derive diffusion equations [28]. Here, we shall extend this approach by including
higher-order terms, which will lead us to a hyperbolic equation, and we will also allow for a
reactive process.

Let us assume that at time t = 0 many particles (animals, viruses, bacteria, etc) are
at x = 0. Let n(x, t) stand for the density of particles that at time t are at position x.
Alternatively, n(x, t) can be defined as the fraction of particles at (x, t). In isotropic random
walks, one assumes the same probability for any particle to jump to the left or to the right.
Also, in this very simple model one assumes that all jumps have the same length δ and that the
particles spend the same time interval T to perform any of the jumps. Then,

n(x, t + T ) = 1
2n(x − δ, t) + 1

2n(x + δ, t) + [n(x, t + T ) − n(x, t)]growth, (8)

where the last term stands for a reactive contribution, which may correspond, for example, to
the reproduction of a living species. In biophysical applications, it is usually referred to as a
growth term. Defining F(n) ≡ [∂n/∂t]growth and assuming that the spatial and temporal lengths
of jumps are much smaller than the typical dimensions and durations measured experimentally
(T � t, δ � x), we may expand the previous equations up to second order to obtain

τ
∂2n

∂t2
+

∂n

∂t
= D

∂2n

∂x2
+ F(n) + τ

∂F (n)

∂t
, (9)

which is a HRD equation, central to the present review, with diffusion coefficient

D ≡ v2τ, (10)

where v ≡ δ/T is the speed of particles, and

τ ≡ T

2
(11)

is called the relaxation or delay time. We see that, in this model, τ is half the time duration
of jumps. Alternatively, in some applications one assumes that T is a resting time between
successive jumps, the duration of which is negligible as compared to the time spent by particles
when performing a jump (in such an instance, v is of course not the speed of particles when
they jump, but it can still be interpreted as a mean speed).

A more restricted approach retains only terms up to first order. Then,

∂n

∂t
= D

∂2n

∂x2
+ F(n), (12)

which is a PRD equation (see equation (3)). It was originally analysed by Fisher in 1937 [1],
and also in 1937 by Kolmogorov et al [29].

Another special case is recovered if, again, one keeps only terms up to first order, and also
neglects the reactive process. Then,

∂n

∂t
= D

∂2n

∂x2
, (13)

which is the well-known evolution equation for Fickian (or non-delayed) diffusion.
More general microscopic models are usually needed to compare theory to observations.

Depending on the microscopic movement of particles in a specific experimental situation, the
approximation of isotropic jumps may break down (section 2.2). Sometimes, one needs to relax
the assumption that the jump or resting time T is the same for all jumps (section 2.6). In other
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experiments, assuming that all jumps have the same length δ is not realistic and the particle
movement takes place in 2D (section 6.1), etc. However, the very simple model presented
above is a very valuable guide to more complicated situations.

2.2. Anisotropic random walks with reaction

When memory effects are taken into account, successive movements of the dispersive particles
are not mutually independent, so that there is a correlation between successive steps. This
model was developed initially by Goldstein [30] in 1951 starting from a pioneering work by
Taylor in 1921 [9]. Following this approach, we now show how to construct a difference
equation and its limiting partial hyperbolic differential equation, while allowing for a reactive
process [31–33].

Let n(x, t) stand for the fraction of particles that at time t are at position x. Denoting by
n+(x, t) and n−(x, t) the fraction of particles which are arriving from the left and from the
right respectively, then

n(x, t) = n+(x, t) + n−(x, t). (14)

We denote by p the probability of jumping in the same direction as the previous jump, i.e. the
probability that the particle persists in its direction after completing a step, whereas q = 1 −p

is the probability for jumping in the opposite direction. Note that in isotropic random walks
(section 2.1), the probability of jumping to the right or to the left is 1/2, so there is no
correlation between the speed direction at successive jumps. When movement is correlated
p and q depend explicitly on the time of jump T . For small T , one can expand in Taylor
series obtaining p = 1 − λT + O(T 2) and q = λT + O(T 2) where λ is the rate of reversal of
direction. Let δ stand for the length of jumps occurring in time intervals of length T . Define
now γ ≡ p−q, the correlation coefficient between two successive steps. Particle reproduction
may be introduced in this model by defining φ as the fraction of newborn particles. Assuming
that the particle reproduction does not depend on the movement direction, φ is function of
n+ + n−. Furthermore, we assume that newborn particles have the same probability to perform
the first jump to the left or to the right. Therefore,

n+(x, t + T ) = pn+(x − δ, t) + qn−(x − δ, t) + 1
2φ(n+ + n−),

n−(x, t + T ) = pn−(x + δ, t) + qn+(x + δ, t) + 1
2φ(n+ + n−).

(15)

In the limit T → 0, δ → 0, keeping the ratio δ/T → v finite (the speed of particles), the
correlation coefficient γ → 1, and the probability of persistence p tends to unity, whereas the
probability q of reversal should tend to zero but one can expand in Taylor series

(n+, n−)(x, t + T ) � (n+, n−)(x, t) + T ∂t (n+, n−) + · · · ,
(n+, n−)(x ± δ, t) � (n+, n−)(x, t) ± δ∂x(n+, n−) + · · · . (16)

By using equations (16), we may rewrite (15) in the form

∂tn+ + v∂xn+ = λ(n− − n+) +
1

2T
φ(n+ + n−), (17)

∂tn− − v∂xn+ = λ(n+ − n−) +
1

2T
φ(n+ + n−). (18)

By adding equations (17) and (18), one obtains the particle conservation equation (2)

∂n

∂t
+

∂J

∂x
= F(n), (19)



Wavefronts in time-delayed reaction–diffusion systems 901

where we have taken into account equation (14) and defined F ≡ φ/T . By subtracting
equations (17) and (18), one finds for the particle flux, J (x, t) = v(n+ − n−), the following
equation:

τ
∂J

∂t
+ J = −D

∂n

∂x
, (20)

which is a Maxwell–Cattaneo equation with relaxation time

τ ≡ 1

2λ
(21)

and diffusion coefficient

D ≡ v2τ. (22)

Combining equations (19) and (20), we find the nonlinear reaction–diffusion equation

τ
∂2n

∂t2
+

∂n

∂t
= D

∂2n

∂x2
+ F(n) + τ

∂F (n)

∂t
, (23)

which is the same HRD equation as that for the isotropic random walk (equation (9)). It is
very important to note, however, that the microscopic expression for the relaxation time (21)
is different from that for the isotropic case (equation (11)). Such microscopic expressions are
absolutely necessary in order to compare to experiments (sections 6–8 in the present review).

2.3. Phenomenological derivation

In this section, we illustrate a simple way to derive the HRD equation by assuming a diffusion
flux which is time-delayed with respect to the establishment of a diffusive gradient [31]. The
balance equation for the density (or, alternatively, the fraction) of particles n in a 1D problem is

∂n

∂t
= −∂J

∂x
+ F(n), (24)

where F(n) is the particle-generating source function. The particle flux J (x, t) must take
into account the relaxational effect due to the delay of the particles in adopting one definite
mean speed and direction to propagate. For instance, memory in the correlation between
steps (section 2.2) may be understood macroscopically as a delay in the flux of particles for a
given concentration gradient. By extending Fick’s law with allowance for a time delay τ (see
equation (7)),

J (x, t + τ) = −D
∂n(x, t)

∂x
, (25)

and expanding J up to the first order in τ one has

τ
∂J (x, t)

∂t
+ J (x, t) = −D

∂n(x, t)

∂x
(26)

which is the Maxwell–Cattaneo equation (20). For τ → 0, we have the special case of
Fick’s law,

J (x, t) = −D
∂n(x, t)

∂x
(27)

Combining equations (24) and (25), we find the evolution equation

∂n(x, t + τ)

∂t
= D

∂2n(x, t)

∂x2
+ F [n(x, t + τ)], (28)

and expanding in Taylor series the functions n(x, t + τ) and F(x, t + τ) up to first order in τ,

we recover the HRD equation (23). Therefore, the macroscopic approach in this section is
consistent with the microscopic ones in sections 2.1 and 2.2.
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2.4. Thermodynamical derivation

In extended irreversible thermodynamics, one assumes that the entropy density s depends on
the classical variables and also the dissipative fluxes [5], in our case s = s(n, J ), with n the
number density of particles and J the particle flux. In differential form,

ds =
(

∂s

∂n

)
dn +

(
∂s

∂J

)
dJ, (29)

where (
∂s

∂n

)
J

= −T −1µ,

(
∂s

∂J

)
n

= −T −1α

n
J, (30)

µ being the chemical potential per particle and α a scalar function not depending on J at this
order of approximation. The generalized Gibbs equation up to the second order in J is then
given by

ds = dseq − T −1 α

n
J dJ, (31)

and integrating, one has for the generalized entropy

s = seq − α

2T n
J 2. (32)

Combining equations (29) and (30) with the particle balance equation (24) and the balance
equation for the entropy, ṡ +∇ ·J s = σsyst [5], we find for the entropy production of the system
of particles (with J s = −µJ/T as usual [5]),

σsyst = − J

T

[
∇µ +

α

n

∂J

∂t

]
− µF

T
. (33)

Let us now notice that the physical volume element contains two subsystems. On the one hand,
the particles—which are the centre of our attention—and, on the other, the medium generating
new particles. What must be positive-definite according to the second law of thermodynamics
is the total entropy production, namely σT = σsyst +σgen, i.e. the sum of the entropy productions
of both subsystems (and not each of them separately). Thus we have

σT = − J

T

[
∇µ +

α

n

∂J

∂t

]
− µF

T
+ σgen � 0. (34)

Expression (34) shows two contributions, one for each irreversible process present. The first
term is related to diffusion, and the last two terms correspond to the creation of particles.
As usual in irreversible thermodynamics, each physical process must have a positive-definite
entropy production,

σdif = − J

T

[
∇µ +

α

n

∂J

∂t

]
� 0, (35)

σgen − µF(n)

T
� 0. (36)

The inequality in equation (35) constrains the term inside brackets that must depend on
the flux J in order for (35) to be positive-definite. In the simplest case, this relation is linear

−
[
∇µ +

α

n

∂J

∂t

]
= LJ, (37)

with L a positive scalar quantity.
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Defining the positive parameters τ ≡ α/nL and D ≡ (∂µ/∂n)/L as the relaxation time
and the diffusion coefficient, respectively, we find for a 1D environment at rest equation (26),
which together with equation (24) yields again the HRD equation (23).

It should be noted that the thermodynamical and phenomenological approaches do not
yield a prediction for the diffusion parameters τ and D in terms of directly measurable
quantities. Indeed, in the derivation above α and µ have not been related to parameters
describing the microscopic movement of particles. However, thermodynamics is a very
powerful and simple way to derive the possible forms of the transport equations [5] that
can be applied to any system, whatever the microscopic mechanisms at work.

2.5. Kinetic derivation

In this section we derive the 1D reaction–telegraph equation for the particle movement from a
kinetic point of view [34], by following the ideas due to Othmer et al [35–37]. Although most
natural species do not live in 1D environments, the reaction diffusion equation we will derive
is the governing equation for dispersal in the limit of 2D interfaces with small curvature, and
may therefore be viewed as a canonical equation for particle movement. Let f(x, v, t) stand
for the nonequilibrium distribution function of particles at position x moving with velocity v

at time t . As usual in kinetic theory, the number density of particles at x at time t is

n(x, t) =
∫

f(x, v, t) dv, (38)

and the particle flux is

J (x, t) =
∫

vf(x, v, t) dv. (39)

Let the contribution to the rate of change of f due to reaction or reproduction be given
by F(n)ϕ(v), so that new particles with a normalized velocity distribution ϕ(v) appear at a
rate depending only on n. Assuming that the velocity changes can be described by a Poisson
process of intensity λ, i.e. that the rate at which particles leave a phase space volume centred
at (x, v) is λf(x, v, t), we have for the net rate at which particles enter the phase space

−λf + λ

∫
f(x, v′, t)K(v′ → v) dv′,

where the kernel K(v′ → v) is the normalized probability of a change of velocity from v′ to v.
Thus the corresponding Boltzmann equation for the distribution function is

∂f

∂t
+ v

∂f

∂x
= Q(f), (40)

where Q(f) describes the interaction processes and plays the role of the reactive and elastic
collision terms in kinetic theory,

Q(f) = F(n)ϕ(v) − λf + λ

∫
K(v′ → v)f(x, v′, t) dv′. (41)

In order to derive the macroscopic transport equation corresponding to the particle movement,
we proceed in the usual way in kinetic theory. Integrating equation (40) and making use of
equation (41), we obtain

∂n

∂t
+

∂J

∂x
= F(n), (42)

which is the balance equation for the number density of particles (see equation (2)). We assume
for simplicity that the speed v0 of particles is constant and that only direction reversals are
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allowed. So, the diffusion kernel reads K(v′ → v) = δ(v + v′). Multiplying equation (40) by
v and integrating, we find that

∂J

∂t
+ 2λJ = F(n)〈v〉 − ∂

∂x

∫
v2

f(x, v, t) dv. (43)

Assuming the velocities of newborn particles to be ±v0, with the same probability 1/2,

ϕ(v) = 1
2δ(v + v0) + 1

2δ(v − v0), (44)

thus the mean value is 〈v〉 = 0. Defining

f
+ = f(x, +v0, t), f

− = f(x, −v0, t), (45)

we can rewrite equation (38) as n(x, t) = f+ + f− and equation (39) as J (x, t) = v0( f+ − f−).

Therefore, f+ and f− may be related to n and J ,

f
+ = 1

2

(
n +

J

v0

)
, f

− = 1

2

(
n − J

v0

)
. (46)

On the other hand, the equation for the particle flux, (43), may be written as

∂J

∂t
+ 2λJ = −v2

0
∂n

∂x
, (47)

where we have applied that
∫

dv v2f(x, v, t) = v2
0(f

++f−) = v2
0n. Equation (47) has the form of

a Maxwell–Cattaneo equation (20) for diffusion processes, namely τ∂J/∂t + J = −D∂n/∂x,
with a flux relaxation time given by

τ ≡ 1

2λ
= T

2
, (48)

with T = 1/λ the time interval between successive jumps, and diffusion coefficient

D ≡ v2
0τ. (49)

By combining equations (42) and (47), we obtain the HRD equation

τ
∂2n

∂t2
+ [1 − τF ′(n)]

∂n

∂t
= D

∂2n

∂x2
+ F(n). (50)

Note that, in contrast to the derivations presented in the previous subsections, here we have not
assumed that temporal and spatial variations can be substituted by their corresponding Taylor
expansions. Thus, for Poisson processes, the HRD equation is not an approximate but an exact
description of the evolution of the system under consideration.

2.6. Derivation from a waiting time distribution

Let P(x, t) be the probability density that particles arrive to the point x at tine t and ρ(x, t)

the probability density to find a particle in x at time t. We introduce �(t ′) as the probability
that a particle waits, at least, a time t ′ before starting a new jump. Then [35]

P(x, t) =
∫

dx

∫ t

0
dt ′ψ(x − x ′, t − t ′)P (x ′, t ′) + δ(x)δ(t) + F(x, t), (51)

where ψ is the distribution function of jump lengths and waiting times, the term δ(x)δ(t)

comes from assuming that all particles are at x = 0 for t = 0, i.e. P(x, t = 0) = δ(x) [35],
F(x, t) plays the role of source term of probabilities and

φ(t) =
∫

dx

∫ ∞

t

dt ′ψ(x, t ′) =
∫ ∞

t

dt ′ψ(t ′). (52)
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On the other hand, we may write

ρ(x, t) =
∫ t

0
dt ′P(x ′, t ′)φ(t − t ′). (53)

Transforming (51) by Fourier–Laplace

P(k, s) = 1 + F(k, s)

1 − ψ(k, s)
, (54)

and transforming equation (53) one gets

ρ(k, s) = �(s)
1 + F(k, s)

1 − ψ(k, s)
, (55)

where �(s) is the Laplace transform of �(t) and is given by

�(s) = 1 − ϕ(s)

s
, (56)

with ϕ(s) ≡ ψ(0, s). So, from (55) one finds

[1 − ψ(k, s)]ρ(k, s) = �(s)[1 + F(k, s)]. (57)

In order to find the evolution equation for the probability ρ(x, t), one must choose the waiting
time and jumps length distributions. If one assumes a Gaussian distribution for the length of
jumps (either in Fourier or in real space) and an exponential distribution for the waiting times
in Laplace space (i.e., a Dirac delta in real time),

ψ(k, s) = e−sT e−σ 2k2
, (58)

where T is the characteristic waiting time before starting a new jump and σ 2 = DT , with
D the diffusion coefficient. For small lengths and waiting times, one can expand in Taylor
series to get e−DT k2 � 1 −DT k2 and esT � 1 + sT + (sT )2/2, respectively, and equation (57)
adopts the form
1
2T s(sρ(k, s) − 1) + sρ(k, s) − 1 = −Dk2ρ(k, s) + F(k, s) + 1

2T sF (k, s), (59)

and antitransforming we get

T

2

∂2ρ

∂t2
+

∂ρ

∂t
= D

∂2ρ

∂x2
+ F +

T

2

∂F

∂t
, (60)

which is again the HRD equation (9), with τ = T/2.
We stress that different derivations are needed in order to be able to obtain specific values

for the parameters τ and D, depending on the experiment at hand. For a given experimental
result that one seeks to explain, the derivation chosen should be that which best describes the
microscopic motion of the particles or living organisms. If the resting time is not approximately
the same for all jumps, then a derivation of the HRD equation in the lines explained in this
subsection is certainly necessary before one can attempt to compare the theoretical predictions
(section 3) to experimental data.

2.7. Additional derivations

Other derivations of the HRD equation have been proposed. A particularly appealing one
is based on Einstein’s theory of Brownian motion. When properly generalized, Einstein’s
approach allows to relate the delay time τ to data that can be determined directly from
experiments in spaces of more than one dimension, and with jumps of unequal length. That
derivation will be presented in section 5.1 in its proper context. Another derivation is based
on considering a Poisson branching processes [36].
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3. Methods of solution to the front speed problem

For an arbitrary number of spatial dimensions, the conservation equation of the particle number,
equation (2), reads

∂n

∂t
+ �∇ · �J = F(n), (61)

where n(�x, t) is the number density of particles. Equation (61) holds independently of whether
diffusion is Fickian (equation (27)), hyperbolic (equation (27)), etc. Indeed, integration of
equation (61) over the volume V of the system yields

dN

dt
=
∫

V

F (n) dV −
∮

S

�J · d�s, (62)

which simply states that the change in the total number of particles N(t) = ∫
V

n(�x, t) dV is
due to the reactive process (first term in the right-hand side) and/or to the particles crossing
the boundary surface S of the system (last term). For an isolated system, this boundary term
vanishes and

dN

dt
=
∫

V

F (n) dV. (63)

Equilibrium states (dN/dt = 0) then satisfy the condition

F(n) = 0. (64)

For illustration purposes, consider the logistic source function

F(n) = An − Bn2, (65)

which compares favourably to experimental data for many biological species [38]. The
parameter A = dF/dn|n=0 is called the initial growth rate. The equilibrium states of (65)
are n = 0 and n = A/B.

In order to introduce the concept of stability, consider first the simple case of an
homogeneous system (n depends on t but not on �x). The evolution equation for the total
number of particles (63) may be written as

dN

dt
= AN

(
1 − b

A
N

)
, (66)

with b ≡ B/V. The solution to this equation under the initial condition N(t = 0) = N0 is

N(t) = N0
N∞eAt

N∞ + N0(eAt − 1)
, (67)

where N∞ = A/b is called the carrying capacity, and is the value to which the population
number N tends as t → ∞. Therefore, any initial condition N(t = 0) = N0 will evolve
towards the equilibrium state N = N∞ (or n = A/B), which is called stable. On the other
hand, any initial condition close to the other equilibrium state of (66), namely N = 0, will
evolve away from it. Therefore, the equilibrium state N = 0 (or n = 0) is called unstable.

Now consider an inhomogeneous system. A wavefront can be defined as a solution n(x, t)

of constant shape and speed connecting two equilibrium states (see figure 1). Usually it is
not possible to determine the front shape analytically, but in many applications the available
experimental data refer to its propagation speed v (see figure 1). In this section, we will discuss
the most useful methods that can be used to predict the front speed for HRD equations.

If the delay time is neglected (τ � 0 in equation (9)), the evolution equation is

nt = nxx + f (n), (68)
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A/B

n*

n

xx2x1

t1 t2

Figure 1. Wavefront connecting two equilibrium states and moving to the right. Wavefronts
correspond to the local evolution of the population density from an unstable state to an stable one.
For a logistic growth function (equation (65)), these states are n = 0 (unstable) and n = A/B

(stable or final state). Since the asymptotic (t → ∞) shape of fronts is constant, in this figure n∗
can have any value such that 0 < n∗ < A/B. The speed of the front is v = (x2 − x1)/(t2 − t1).

where n is the density of particles or living organisms. Equations of this kind are called PRD
equations. It has been shown by Aronson and Weinberger [39] that sufficiently localized initial
conditions evolve asymptotically into a travelling monotonic wavefront. It is observed both
experimentally and numerically that the global, nonlinear dynamics rapidly selects a unique
solution. The speed c at which the front moves towards the stable state is referred to as the
selected speed.

For PRD equations, there already exist several proposed criteria in the literature for the
analysis of the dynamical velocity selection: a minimum speed rule [40], structural stability
[41], marginal stability [40, 42], and many others. Below we shall present several methods to
study the speed of HRD equations. The results for PRD equations (τ → 0) will be recovered
as special cases.

It is convenient to rescale equation (9) for further purposes as follows:

t∗ = kt, (69)

x∗ = x

√
k

D
, (70)

and write

F(n) ≡ kf (n), (71)

where 1/k is a characteristic time of the reactive process. We define

a ≡ kτ. (72)

Then equation (9) becomes, omitting asterisks for notational simplicity,

a∂ttn + ∂tn = ∂xxn + f (n) + af ′(n)∂tn. (73)

In the following subsections we illustrate different methods to find bounds or, in some cases,
the exact asymptotic speed,

v = c
√

kD (74)

for wavefront solutions to HRD equations.
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3.1. Linear analysis

Assume that equation (73) has travelling wavefronts with profile n(x − ct) and moving with
a dimensionless speed c > 0. It will satisfy the equation

(1 − ac2)nzz + c[1 − af ′(n)]nz + f (n) = 0, (75)

where z = x − ct, and with boundary conditions limz→∞ n = 0, limz→−∞ n = 1, and nz < 0
in (0, 1); we also assume that nz vanishes for z → ±∞ [33]. We will now analyse how linear
stability analysis can be applied to HRD equations, in order to study the speed of the front.

Linear analysis makes it possible to study the behaviour of the wavefront near
the equilibrium states (n = constant), which according to equation (9) are the solutions to
the equation f (n) = 0, say n = 0 and n = 1 (e.g. for the logistic growth, one may define
n∗ ≡ Bn/A so the equilibrium states are n∗ = 0 and n∗ = 1). In [31] the lower bound
for c was derived by analysing the trajectories in the phase space (n, nz) [28]. Here we will
summarize an alternative approach that yields the same conditions on the front velocity but, in
contrast to the one in [31], it will allow us to analyse the asymptotic behaviour of n(z) near the
equilibrium points [43]. This behaviour will in turn be used in the derivation of better bounds
on the speed in section 3.3.

3.1.1. n ≈ 0. Setting ε(z) = n(z) � 1, we linearize equation (75) to obtain the front
equation near n = 0. We get

(1 − ac2)εzz + c[1 − af ′(0)]εz + f ′(0)ε = 0. (76)

Solutions of the form ε ∼ eλz provide us with the following characteristic equation:

(1 − ac2)λ2 + c[1 − af ′(0)]λ + f ′(0) = 0. (77)

So, the solution of the linearized equation (76) near n = 0 is given by

ε(z) = A+eλ+z + A−eλ−z (78)

where A+ and A− are integration constants (depending on the initial and boundary conditions)
and λ± are the solutions of the characteristic equation (77). Since ε(z) = n(z) is the number
density of particles, it cannot be negative for any possible value of z, thus λ± ∈ R. It therefore
follows from equation (77) that c has a lower bound cL given by

c � cL = 2
√

f ′(0)

1 + af ′(0)
, (79)

where it has been assumed that f ′(0) > 0. If this does not hold, the approach we shall present
in this section breaks down. This happens, for example, in forest fire models (section 4.4), and
in such cases one may resort the variational analysis we will develop in section 3.3.

For the parabolic case (τ → 0), equation (79) becomes

cτ→0 � 2
√

f ′(0), (80)

which is the classical result due to Fisher [1]. In the analysis of combustion waves [44], it is
often referred to as the Kolmogorov–Petrovski–Piskunov (KPP) value [29].

In the limit z → +∞ one has n → 0 as boundary condition, so λ± must be negative. If
one (or both) values of λ were positive, then in the limit z → +∞ one would have n → +∞
and we would not be dealing with a solution connecting the equilibrium states n = 1 and
n = 0, thus the solution under consideration would not satisfy the definition of wavefront,
given at the beginning of section 3. Therefore equation (77) yields the conditions

c <
1√
a
, (81)

1 − af ′(0) > 0. (82)
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3.1.2. n ≈ 1. We now introduce ε(z) = 1−n(z) > 0 and f (n) � −f ′(1)(1−n) = |f ′(1)|ε,
assuming f ′(1) < 0 (in biological applications f (n) is always to observed to satisfy this
condition [38]). The linearized equation (75) near n = 1 is

(1 − ac2)εzz + c[1 + a|f ′(1)|]εz − |f ′(1)|ε = 0. (83)

This equation holds for n ≈ 1 and is the analogue to equation (76), which holds for n ≈ 0.

Similarly, for n ≈ 1 equations (77) and (78) are replaced by

(1 − ac2)λ2 + c[1 + a|f ′(1)|]λ − |f ′(1)| = 0, (84)

ε(z) = B+eλ+z + B−eλ−z, (85)

respectively. Here we note that there are real two solutions for λ, one of them being positive
(say λ+) and the other one negative (say λ−). Thus, contrary to what happened in the case
n ≈ 0 (where λ+ and λ− could both be required to be negative in order to ensure that n → 0
for z → ∞ for arbitrary initial conditions), here we have λ+ > 0 and λ− < 0. Now since we
must require that n → 1 for z → −∞, we see that it is necessary that B− = 0, i.e. for n ≈ 1
only λ+ > 0 will appear in the asymptotic solution (85), whereas for n ≈ 0 both λ+ < 0 and
λ− < 0 appear in the corresponding solution (78). This general result is in agreement with an
explicit solution, which was derived previously for a very specific source term f (n) and initial
condition (see section V in [31]).

Just to summarize, the linear analysis presented in this section shows the existence of
a travelling wavefront, connecting the equilibrium states n = 0 and n = 1, provided that
f ′(0) > 0 and that the front satisfies the conditions (79), (81) and (82).

3.2. Marginal-stability analysis

The marginal-stability approach (MSA) was studied initially by Dee and Langer [40] and
Ben-Jacob et al [42]. In this subsection, we shall show how the MSA performed by van
Saarloos for PRD equations [45] may be extended to HRD equations.

The velocity c∗ corresponding to MSA can be determined explicitly from a simple analysis
in the leading edge of the profile. If ω(k) is the dispersion relation of the linear portion of
the HRD equation (9), where ω and k are complex, the front has an envelope which moves
with a velocity Re ω(k)/Re k. For the leading edge, stability with respect to small changes in
the wave vector requires Im(dω/dk) = 0. The profile is marginally stable when the envelope
velocity is also equal to dω/dk. Hence if the selected velocity corresponds to the marginal
stability velocity c∗, we have

c∗ = Re ω(k∗)
Re k∗ =

(
dω

dk

)
k=k∗

, (86)

Im

(
dω

dk

)
k=k∗

= 0. (87)

These equations determine k∗ and c∗. The dispersion relation ω(k) may be obtained by
inserting n ∼ exp[ωt − kx] into the linear part of equation (73) [f (n) � f ′(0)n]. This yields

aω2 + ω = k2 + f ′(0) + af ′(0)ω. (88)

Since ω and k are complex, we define ω = ωr + iωi and k = kr + iki, where the subscripts r
and i denote the real and imaginary part, respectively. Defining the following quantities

αr = (1 + af ′(0))2 + 4a(k2
r − k2

i ),

αi = 8akrki,
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βr = 1√
2

[√
α2

r + α2
i + αr

]1/2

,

βi = 1√
2

[√
α2

r + α2
i − αr

]1/2

, (89)

we obtain the real and imaginary parts of ω:

ωr = −1 + af ′(0) ± βr

2a
, ωi = ± βi

2a
. (90)

So, from equation (87),

Im

(
dω

dk

)
= 2(kiβr − krβi)

β2
r + β2

i

= 0, (91)

which is fulfilled if βi = 0 and ki = 0 (see equation (89)). From the first equation in (89) we
obtain an equation for kr which may be solved to yield

k∗
r =

√
f ′(0)

1 + af ′(0)

1 − af ′(0)
, (92)

and from equations (86) and (90)

c∗ = ωr

kr
= 2

√
f ′(0)

1 + af ′(0)
, (93)

which provides an assessment of the result obtained by the linear analysis near the equilibrium
unstable state (equation (79)). We conclude that, for HRD equations, either of both methods
can be used provided that f (0) = 0 and f ′(0) > 0. However, for some important source
functions f (n) one has f ′(0) = 0. Then one must seek alternative approaches, such as the
variational one presented in the next subsection.

3.3. Variational analysis

In this section we show how the variational analysis proposed by Benguria and Depassier for
PRD equations [46] can be extended to HRD equations [43]. We start from equation (75)
and define p(n) = −nz with p(0) = p(1) = 0 and p > 0 in (0, 1). Equation (75) may be
written as

(1 − ac2)p
dp

dn
− c[1 − af ′(n)]p + f (n) = 0. (94)

Let g(n) be an arbitrary positive function. Multiplying equation (94) by g/p and integrating
by parts we obtain

c

∫ 1

0
g(1 − af ′(n)) dn =

∫ 1

0

[
(1 − ac2)hp +

gf

p

]
dn (95)

where h = −g′ > 0, as chosen for PRD equations [47]. Now for any positive numbers r

and s, it follows from (r − s)2 � 0 that (r + s) � 2
√

rs. If 1 − ac2 > 0 or c < 1/
√

a, since
f, g, h, and p are positive, we may choose r ≡ (1 − ac2)hp and s ≡ gf/p to get a restriction
on c which eliminates p,

(1 − ac2)hp +
gf

p
� 2
√

1 − ac2
√

fgh, (96)

and therefore

c√
1 − ac2

� 2

∫ 1
0

√
fgh dn∫ 1

0 g(1 − af ′(n)) dn
. (97)
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If the effect of the delay time τ is neglected (i.e. for a = kτ ≈ 0), this reduces to the Benguria–
Depassier principle [46,47]. To see that equation (97) is a variational principle, we must show
that there is a function g = ĝ for which the equality holds. From the explanation above
equation (96) we see that this happens when r = s or

(1 − ac2)ĥp = ĝf

p
, (98)

which according to our HRD equation (94) implies that ĝ satisfies the ordinary differential
equation

ĝ′

ĝ
= − c

1 − ac2

1 − af ′(n)

p
+

p′

p
. (99)

The corresponding ĝ, obtained by integrating this equation, is given by

ĝ(n) ∼ p(n) exp

[
− c

1 − ac2

∫ n

n0

1 − af ′(ñ)

p
dñ

]
(100)

with 0 < n0 < 1. Evidently ĝ(n) is a continuous positive function. We will now determine
the behaviour of ĝ(n) near n = 0 and see that the integrals in equation (97) exist. To verify this
we recall, from the linear analysis, that the front approaches n = 0 exponentially. From this,
it is easily seen that the dominant term in equation (78) yields p = −dn/dz ∼ µn, where

µ = 1

2(1 − ac2)
[c(1 − af ′(0)) +

√
c2(1 + af ′(0))2 − 4f ′(0)]. (101)

For τ → 0 this reduces, as it should, to the result derived for PRD equations by Aronson and
Weinberger [39] (see also [47]). Thus, from equation (100) we get, near n = 0,

ĝ(n) ∼ n1−γ , (102)

where

γ = c(1 − af ′(0))

µ(1 − ac2)
. (103)

We also get in this limit
√

f ĝĥ ∼ ĝf ′(n) ∼ n1−γ . Hence the integrals in equation (97) exist
if γ < 2. This condition is satisfied provided that

c >
2
√

f ′(0)

1 + af ′(0)
, (104)

which is in agreement with the lower bound (79) derived form the linearization method. But
this is only a lower bound. As we shall see, the lower bound is often different from the true
speed (this is also true for PRD equations [44]). Thus, the variational method goes much
further than those in sections 3.1 and 3.2. Indeed, the exact asymptotic speed of the front may
in principle be computed from

c√
1 − ac2

= max
g

(
2

∫ 1
0

√
fgh dn∫ 1

0 g(1 − af ′(n)) dn

)
. (105)

Below we shall see how this maximization is performed in order to obtain lower and upper
bounds and, in some case, the exact value of c.

It is important to notice that the variational result given by equation (105) requires two
strong conditions in order to be applicable, namely

c <
1√
a

(106)
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and

1 − af ′(n) > 0. (107)

The second restriction is equivalent to a < 1/M, with M = maxn∈(0,1) f ′(n), and will be used
explicitly in the derivation of upper bounds for the front velocity (subsection 2 below). In the
following two subsections, we analyse whether the variational result leads to lower and upper
bounds for the asymptotic speed and compare to the linear (and marginal stability) results from
sections 3.1 and 3.2. We shall also show that the variational result (105) makes it possible to
obtain a better upper bound on the speed than that following from linear stability or the general
variational arguments above, i.e. c < cmax = 1/

√
a (see equation (81) or (106)).

3.3.1. Lower bounds. In this section we will present a simple example on the variational
derivation of lower bounds. We will consider the simple case in which f ′(0) > 0, and rederive
equation (79). Although that result has been already derived above, the method we will present
turns out to be a very useful guide to more complicated cases such as upper bounds. It will
also be valuable in order to find out lower bounds if f ′(0) = 0, a relevant case for which
the methods in the previous sections break down altogether (this will be discussed in detail in
section 4.4).

As we have mentioned in the study above, one may obtain a lower bound for the asymptotic
speed by means of a given function g(n). This trial function must satisfy that g(n) > 0 and
g′(n) < 0 in (0, 1). Consider the simple sequence of trial functions g = nα−1 in the limit
α → 0. These functions are positive and have negative derivative for 0 � α < 1, as required
in the derivations in section 3.3 above. According to equation (97) or (105),

c√
1 − ac2

� 2
√

1 − α

∫ 1
0 nα−3/2√f (n) dn∫ 1

0 nα−1[1 − af ′(n)] dn
. (108)

In the limit α → 0, the integrands diverge at n = 0, as in the case of PRD equations [46], thus
only the singular point will contribute in the limit. The surviving contributions are then

c√
1 − ac2

� 2
√

1 − α

∫ ε

0 nα−3/2√f (n) dn∫ ε

0 nα−1[1 − af ′(n)] dn
. (109)

We may expand the integrands in Taylor series near n = 0. Only the leading term in the
expansions will contribute as α → 0 and we have, assuming f ′(0) > 0,

c√
1 − ac2

� 2
√

1 − α

∫ ε

0 nα−3/2√f ′(0)n dn∫ ε

0 nα−1[1 − af ′(0)] dn
. (110)

Performing the integrals and taking the limit α → 0 we obtain

c√
1 − ac2

� 2
√

f ′(0)

1 − af ′(0)
, (111)

thus

c � cL = 2
√

f ′(0)

1 + af ′(0)
. (112)

This reduces, as it should, to the classical or PRD value cL = 2
√

f ′(0) [1, 29, 39] if the
effect of the delay time is neglected (a ≈ 0). It is seen that the lower bound (112) is the
same as equation (79), which is also known from the derivation of the variational principle
above. We conclude that the variational principle we have derived does not provide better
lower bounds for the speed of wavefronts than the linear or MSA approaches if we choose
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g(n) = nα−1. As we shall see in detail in the following subsection, the opposite happens for
upper bounds. Moreover, the method presented above for g(n) = nα−1 is of interest since it
does yield better lower bounds for other trial functions g(n), depending on the source function
considered (an explicit example will be presented in section 4.4).

3.3.2. Upper bounds. By extending the PRD development by Benguria and Depassier [46],
it is possible to derive upper bounds for the asymptotic speed of HRD equations [43]. We need
the particular case of Jensen’s inequality [48]

∫ 1
0 µ(n)

√
α(n) dn∫ 1

0 µ(n) dn
�

√√√√∫ 1
0 µ(n)α(n) dn∫ 1

0 µ(n) dn
(113)

where µ(n) > 0 and α(n) � 0. If we define

µ(n) ≡ g(n)[1 − af ′(n)] (114)

and

α(n) ≡ f (n)h(n)

g(n)(1 − af ′(n))2
, (115)

then the left-hand side of the inequality (113) may be written as∫ 1
0 µ(n)

√
α(n) dn∫ 1

0 µ(n) dn
=

∫ 1
0

√
fgh dn∫ 1

0 g(1 − af ′) dn
, (116)

and inside the square root in the right-hand side we have∫ 1
0 µ(n)α(n) dn∫ 1

0 µ(n) dn
=
∫ 1

0 [f h/(1 − af ′)] dn∫ 1
0 g(1 − af ′) dn

. (117)

Then, from equations (105) and (113), we obtain a relatively simple expression which will
allow us to find upper bounds,

c√
1 − ac2

= 2 max
g

( ∫ 1
0

√
fgh dn∫ 1

0 g(1 − af ′) dn

)
� 2 max

g

[∫ 1
0 [f h/(1 − af ′)] dn∫ 1

0 g(1 − af ′) dn

]1/2

. (118)

We now observe that integration by parts makes it possible to find an expression in which
h = g′ no longer appears,∫ 1

0

f h

1 − af ′ dn =
∫ 1

0
g

f ′ + a(ff ′′ − f ′2)
(1 − af ′)2

dn. (119)

Moreover, in order to get an upper bound independent of g, we write equation (119) in a more
useful form, ∫ 1

0

f h

1 − af ′ dn =
∫ 1

0
g(1 − af ′)

f ′ + a(ff ′′ − f ′2)
(1 − af ′)3

dn

� sup
n∈(0,1)

[
f ′ + a(ff ′′ − f ′2)

(1 − af ′)3

] ∫ 1

0
g(1 − af ′) dn, (120)

were we have applied the condition (1 − af ′) > 0. Finally,
c√

1 − ac2
� 2
√

sup
n∈(0,1)

�(n) (121)
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where

�(n) ≡ f ′ + a(ff ′′ − f ′2)
(1 − af ′)3

. (122)

Hence the upper bound may be written as

cU = 2q(a)√
1 + 4aq2(a)

(123)

where q(a) = √
supn∈(0,1) �(n). This result may be written in a simpler form if we assume

that the source function f (n) is continuous and such that f ′′ < 0 in (0, 1). Then, since
f (0) = f (1) = 0 we have f ′(0) > 0 and f ′(1) < 0. We may write

�(n) = f ′

(1 − af ′)2
+ a

ff ′′

(1 − af ′)3
(124)

where, recalling the condition 1 − af ′(n) > 0, we see that the second term is negative (it only
vanishes at n = 0, 1). Moreover, since we have assumed that f is continuous and that f ′′ < 0,
the first term decreases for increasing values of n. Thus,

sup
n∈(0,1)

�(n) = f ′(0)

(1 − af ′(0))2
,

and we have the simpler result

c � cU = 2
√

f ′(0)

1 + af ′(0)
, (125)

which holds provided that f is continuous and f ′′ < 0 in (0, 1). Some examples are discussed
in section 4. We note that the lower and upper bounds are the same (see equation (112)), so
the asymptotic speed may be predicted without uncertainty

c = 2
√

f ′(0)

1 + af ′(0)
. (126)

This generalizes the corresponding theorem for PRD equations (a = 0), which states
that the exact wavefront speed is cτ=0 = 2

√
f ′(0) provided that f (n) is continuous and that

f ′′ < 0 in (0, 1) [39, 47]. Note that the effect of the delay time is to reduce the wavefront
speed, c < cτ=0, as it was to be expected intuitively.

The method presented in this subsection will be applied to the case f ′(0) = 0 in section 4.4.

3.4. Hamilton–Jacobi dynamics

Fedotov has applied Hamilton–Jacobi dynamics to the front speed problem [49] as follows.
In the long-time, large-distance behaviour of the travelling-wave solution to equation (9) from
the initial condition n(0, x) = θ(x), where θ(x) is the Heaviside function, it is convenient to
make the scaling t → t/ε and x → x/ε, where ε is a small parameter. We can write then
equation (9) in the form of a Cauchy problem,

τε∂ttn
ε + ∂tn

ε = εD∂xxn
ε +

F(nε)

ε
+ τF ′(nε)∂tn

ε,

nε(x, 0) = θ(x),
(127)

where nε(x, t) ≡ n(x/ε, t/ε). The problem is now to derive the equation governing the position
of the front. This can be done by replacing nε(x, t) by an auxiliary field Gε(x, t) � 0 through
the exponential transformation

nε(x, t) ≡ exp

[
−Gε(x, t)

ε

]
.
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We expect that the profile develops into a wavefront, i.e. that nε(x, t) tends to a unit step
function θ(x − vt) as ε → 0. The goal is to find a function Gε(x, t) determining the position
of the front, such that

lim
ε→0

nε(x, t) =
{

0 Gε(x, t) > 0,

1 Gε(x, t) = 0.

Straightforward calculations show that Gε(x, t) satisfies the equation

τ(∂tG
ε)2 − τε∂ttG

ε −
[

1 − τ
dF(Gε)

dGε

]
∂tG

ε

= D(∂xG
ε)2 − εD∂xxG

ε + F(Gε) exp

[
Gε(x, t)

ε

]
. (128)

Taking the limit ε → 0, we may conclude from equation (128) that the limiting function
G(x, t) = limε→0 Gε(x, t) obeys the first-order, nonlinear partial differential equation

τ(∂tG)2 −
[

1 − τ lim
ε→0

dF(Gε)

dGε

]
∂tG = D(∂xG)2 + lim

ε→0
F(G) exp

[
G(x, t)

ε

]
.

We consider source functions of the form F(n) = knb(n) such that

max
n∈[0,1]

b(n) = b(0) = 1 and b(1) = 0, (129)

as for instance the generalized logistic source F(n) = kn(1 − np). Therefore,

lim
ε→0

dF(Gε)

dGε
= lim

ε→0
F(G) exp

[
G(x, t)

ε

]
= k

and finally,

(∂tG)2 − α

τ
∂tG − D

τ
(∂xG)2 − k

τ
= 0. (130)

On the other hand, the relativistic Hamilton–Jacobi equation for a particle with mass M

moving in the potential field V is [50]

(∂tG + V )2 − M2c4 − c2(∂xG)2 = 0. (131)

with an associated Hamiltonian

H =
√

M2c4 + c2p2 + V, (132)

where H ≡ −∂tG, p ≡ ∂xG and c is the speed of light.
By comparing equation (131) with (130) one has

V = −1 − τk

2τ
, (133)

c =
√

D

τ
, (134)

M2 = (1 − τk)2/4τ 2 + k/τ

c4
. (135)

The solution of (131) is

G(x, t) = min
x(0)=x,x(t)=0

[∫ t

0
L(x, s) ds

]
, (136)

where the Lagrangian L has the form

L(x, s) = −Mc2

√
1 − 1

c2

(
dx

ds

)2

− V. (137)
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The optimal trajectory satisfies the Euler–Lagrange equation

d

ds

(
∂L

∂ẋ

)
− ∂L

∂x
= 0 (138)

where ẋ ≡ dx(s)/ds. Introducing (137) into (138) and solving the differential equation, one
has x(s) = −xs/t +x, where the conditions x(0) = x and x(t) = 0 must be taken into account.
The Langrangian is then L = −Mc2

√
1 − (1/c2)(x/t)2 − V and from equation (136)

G(x, t) = −Mc2t

√
1 − 1

c2

(x

t

)2
− V t. (139)

The position of the front is given by the condition G(x, t) = 0, that is x = vt where

v = c

√
1 − V 2

M2c4
= 2

√
Dk

1 + τk
(140)

which is the same speed, with proper units, as that derived by other methods (equations (79),
(93) and (126)). The maximum value for the speed of the front is vmax = √

D/τ , because it
corresponds to the speed of light in the Hamilton–Jacobi equation. This upper bound was also
derived for the linear analysis (equation (81)). The maximum speed may be reached for the
case kτ = 1, so the expression for the speed v (140) holds for kτ < 1. This restriction was
also required in the linear analysis (equation (82)).

The method presented in this subsection has been developed by Fedotov [49, 51] and has
been extended to nonuniform reaction rates [52, 53], several dimensions [52] and anisotropic
diffusion [54].

3.5. Approximate variational approach

We have shown in section 3.3 that the speed of fronts described by equation (9) satisfy the
variational principle (105). As we will show in the applications section 4, for some source
functions f (n) the upper and lower bounds are different. Then, the approximate approach
presented below gives better results for the speed [55]. The function g for which the right-hand
side of equation (105) reaches its maximum satisfies equation (98),

(1 − ac2)hp = fg

p
. (141)

In the limit n → 1 one has, since nzz � nz, −c(1 − af ′)p + f (n) � 0. This is an approximate
relationship, so we may introduce α such that [55]

p = f (n)

α(1 − af ′)
� n(1 − n)

α(1 − af ′)
, (142)

where the prime symbol denotes ′ ≡ d/dn. Therefore, equation (105) may be written as

c√
1 − ac2

� max
α∈D

[
2α

∫ 1
0 gf [(1 − af ′)/(n(1 − n))] dn∫ 1

0 g(1 − af ′) dn

]
, (143)

where by integrating equation (141)

g(n) = exp

[
− α2

1 − ac2

∫
f

(1 − af ′)2

n2(1 − n)2
dn

]
, (144)

and D is the set of values for α such that the above integrals exist. This method is very useful
for source functions f (n) such that the previous approaches break down or yield less precise
results [55] (an explicit example will be presented in section 4.4). It has been also successfully
applied to non-delayed equations, such as anomalous diffusion fronts in reactive systems and
reaction–diffusion under advection [55].
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3.6. Renormalization group technique

The renormalization group theory for wavefronts finds out approximate speeds assuming
a small perturbation to an evolution equation the exact speed and front shape of which is
known [41, 55]. Consider a system described by the abstract equation ∂tn = N{n} and n0(z),

z = x − c0t is a stable travelling front solution with speed c0. On the other hand, n(z) is
solution of the perturbed equation ∂tn = N{n} + δN{n}. Its speed may be written as

c � c0 + δc, (145)

where [41]

δc = −
∫∞
−∞ dz ϕ(z)[dn0/dz]δN{n0}∫∞

−∞ dz ϕ(z)[dn0/dz]2
, (146)

with ϕ(z) an appropriate weight function, which we may take equal to ec0z. For equation (9),
we shall treat a as a small perturbation [56]. The unperturbed equation is then ∂tn0 =
∂xxn0 + f (n0),whose exact solution n0(z) and speed c0 must be known. Therefore,

δN{n0} = −af ′(n0)c0
dn0

dz
− a

d2n0

dz2
c2

0 (147)

and introducing equation (147) in (146), one finds an approximate value for the speed c. We
shall calculate it explicitly for a specific application in section 4.4.

4. Some applications of single-species models

PRD equations have been studied for more than 60 years [1, 29]. During this time, many
important applications have been found, including the spread of advantageous genes [1, 57],
population dynamics [57,28], the development of epidemics [4], nerve conduction [58], cellular
sensitivity [59] and other biological phenomena, in addition to physical applications such as
the spread of flames [29,2], superconductors [60], solidification [61], liquid crystals [62]
and chemically reacting systems [18]. HRD equations have a comparatively much shorter
history [33] and, as happened in the first applications of PRD equations, have for the moment
been applied to many biological and some physical processes. This is reasonable since, as we
shall see, HRD equations have been used to describe properly several experimental biophysical
results which were previously unexplained. Also, the value of the delay time in equation (9) is
relatively simple to estimate in such systems. In this section we select a wide variety of source
functions which have relevant physical and biological applications, and apply the methods
from section 3 to determine the speed of wavefronts. The way parameters are estimated from
experimental data and direct comparison to observations is deferred to sections 6–8.

4.1. Logistic growth

The logistic source term (65) is

F(n) = An − Bn2. (148)

This is a realistic function driving the reproduction of many species [38]. We introduce
dimensionless variables according to equations (69 )–(72), choosing

1

k
= 1

A
(149)
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for the reactive characteristic time. Then,

f (n) = n

(
1 − B

A
n

)
, (150)

which satisfies the condition f ′(0) �= 0, is continuous and has f ′′ < 0. Whereas the linear
analysis gives only the lower bound (79), the variational results (112) and (125) show that the
asymptotic speed of the fronts is

c = 2

1 + a
. (151)

It should be recalled that c is a dimensionless speed. The true speed must be computed
from equation (74), which yields

v = 2
√

DA

1 + τA
. (152)

Equation (151) is in agreement with the Hamilton–Jacobi method, equation (140), and
also with MSA, equation (93). If the effect of the delay time is neglected (a = τk = 0), we
recover the well-known result c = 2 or v = 2

√
DA [1, 29, 39].

Equation (73) was solved numerically for the logistic source function in order to determine
the speed of fronts for different values of a. The results of the simulations are compared to
the analytical expression c = 2/(1+a) in figure 2. The numerical simulations of equation (73)
were performed [43] by assuming that initially n = 1 in a localized region and n = 0 elsewhere,
and making use of the splitting operator technique [63]. The profile n(x) was plotted at
different times. By using the method in figure 1, one may then determine the asymptotic speed
selected by the smooth front that is observed after an initial transient. From figure 2, it is seen
that the simulations of hyperbolic wavefronts yield rather satisfactory agreement between the
numerical results and equation (151). This equation will in turn be used in section 6 to compare
to experimental observations.

0.0 0.2 0.4 0.6 0.8 1.0

c

a

theory
FK
logistic

1.0

1.2

1.4

1.6

1.8

2.0

Figure 2. Comparative plot between the analytical expression for the dimensionless speed
c = 2/(1 + a) and the dimensionless speed obtained from numerical integration of (73) as a
function of the dimensionless parameter a for logistic growth (◦) and generalized FK kinetics,
p = 2 (♦) [43]. There is good agreement between numerical and analytical results.



Wavefronts in time-delayed reaction–diffusion systems 919

4.2. Generalized Fisher–Kolmogorov kinetics

The logistic function is the simplest one leading to some reasonable results [38], such as
the saturation of populations with a limited amount of available resources (see the text
following equation (67)). However, other source functions are important in biological
applications. A particularly relevant case is the Fisher–Kolmogorov (FK) source function,
namely f (n) = n(1 − αn2), which is important in genetics [1]. Here we will assume a
generalized FK function,

f (n) = n(1 − αnp), (153)

with p � 1. As in the logistic case, we have f ′(0) �= 0, f is continuous and f ′′ < 0. Thus
using the variational results (112) and (125), we can predict the speed of wavefronts without
any uncertainty, c = 2/(1 + a). The Hamilton–Jacobi method also provides this result. It
means that this expression for the selected speed holds not only for the logistic case, but also
for more general situations of practical interest. From figure 2 [43], we see that this prediction
agrees with the simulations of equation (73) for the FK source function.

4.3. HRD generalization of a cubic PRD model

Consider next the cubic source function

f (n) = n

b
(1 − n)(b + n), (154)

with 0 < b < 1. This function has been applied in several reaction–diffusion studies on
genetics, among them in the description of inferior heterozygotes selection [64] and of the
morphogenetic field of a multicellular ensemble [65]. The source function (154) has also been
useful because it can be solved exactly when the delay time is not accounted for (a = 0) [42,47].

A lower bound for the speed of fronts can be obtained form equation (112), namely,
2/(1+a). On the other hand, the source term (154) satisfies that f ′′ < 0 for (1−b)/3 < n < 1,

but has f ′′ > 0 for 0 < n < (1 − b)/3, so the upper bound (151) cannot be applied and
we cannot obtain the exact asymptotic speed. However, we shall see that it is possible to
constraint the speed. Let us first obtain a better lower bound. As in the case of PRD equations
with the source term (154) [47], we choose g(n) = (1 − n)2+2b n−2b. We now apply the
variational analysis method (section 3.3.1) for this single trial function instead of the sequence
g(n) = nα−1. Equation (105) yields, after some algebra,

c√
1 − ac2

� 2

√
2b

�(4)
+

√
2

b

1 − 2b

�(5)

1 − a

�(4)
+

6a

b

(1 − b)(1 − 2b)

�(6)
− 2a

b

(1 − b)(1 − 2b)

�(5)

, (155)

where the integrals have been solved making use of formula (3.191-3) in [48]—which applies
under the assumption that 0 < b < 1/2, �(z) is the Gamma function and we have applied that
�(z + 1) = z�(z). From this we find the lower bound

cL =



cL(a, b), 0 < b < 1
2

2

1 + a
,

1

2
< b < 1

, (156)

where

cL(a, b) =
√

2b + 1/
√

2b√(
1 − a

5

1 + 2b + 2b2

b

)2

+
a

2b
(1 + 2b)2

. (157)
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Figure 3. Comparative plot between lower and upper bounds for c and the results from simulations
of equation (73) for the cubic source function (154). Here a = 1/2, and the range of values of b is
constrained because of the range of validity of the variational approach. Lower and upper bounds
are plotted in solid lines and numerical results in circles [43].

Notice that for 1/2 < b < 1 the integrals in equation (105) diverge, so that we have resorted
to the lower bound (112). In the PRD case (a = 0), we recover the result found by Ben-Jacob,
namely cL = √

2b + 1/
√

2b for 0 < b < 1/2 and 2/(1 + a) for 1/2 < b < 1 [42]. For the
upper bound we cannot apply equation (125), as explained above, but we can still derive an
upper bound from equations (122) and (154). Equation (122) yields, after some algebra,

�(n) =
1 +

2

b
n − 2n − 3

b
n2 − a

[
1 +

2(1 − b)

b
n+

2(1 − 2b + b2)

b2
n2− 4(1 − b)

b2
n3 − 3

b2
n4

]
[

1 − a

(
1 +

2

b
n − 2n − 3

b
n2

)]3

(158)

and the speed is given by equation (123). In the limit b → 1, f ′′(n) < 0 and sup �(n) = �(0),
thus cU → 2/(1 + a). The variational analysis for the lower and upper bounds is restricted
to the condition 1 − af ′ > 0, which is equivalent to a < M−1, with M = maxn∈(0,1) f ′(n).
For this case one finds M = (1 + b + b2)/3b and the restriction is (5 − √

21)/2 < b < 1
if a = 1/2. We have plotted the bounds for a = 1/2 in figure 3, as well as the results from
numerical simulations of equation (73) with the source function (154), as a function of b. We
observe good agreement between the simulations [43] and the lower and upper bounds. In this
and the following cases, the MSA (section 3.2), Hamilton–Jacobi dynamics (section 3.4) and
the linear approach (section 3.1) do not yield good results if one compares them with numerical
simulations. This shows the usefulness of the variational method (section 3.3).

4.4. Forest fire models

HRD equations have been used to model the propagation of forest fires [16]. In this toy
model, a direct relationship to experimental data is not pursued. However, it serves very



Wavefronts in time-delayed reaction–diffusion systems 921

well to illustrate the application of the theory before attempting to apply it to explain several
experimental results (sections 6–8). The reaction term considered is of the form

f (n) = nβ(1 − n). (159)

For β = 1, this reduces to the logistic case (section 4.1), so we will assume that β > 1. The
parameter β quantifies the number of burning trees needed in order to set fire to a nearby, green
tree [16]. For high values of β, it is expected intuitively that the speed of the fire front will be
smaller.

4.4.1. Variational bounds. For equation (159), we have f ′(0) = 0, thus the linear and MSA
analysis (sections 3.1 and 3.2) do not hold. Therefore, we resort to the variational analysis
(section 3.3). Still, since f ′(0) = 0, equation (112) does not apply, and since f ′′ < 0 does
not hold everywhere in (0,1) equation (125) cannot be applied either. As in section 3.3.1, let
us consider the simple sequence of trial functions g = nα−1, with 0 � α < 1. The integrals in
equation (105) are

∫ 1

0

√
fgh dn = √

1 − α

�

(
β

2
+ α − 1

2

)
�

(
3

2

)

�

(
α + 1 +

β

2

)
∫ 1

0
g(1 − af ′) dn = 1

α
− a

1 − α

(β + α)(β − 1 + α)
. (160)

Thus the best lower bound is given by
cL√

1 − ac2
L

= max
α∈(0,1)

{G(α, β)}, (161)

where

G(α, β) =
2α

√
1 − α�

(
β

2
+ α − 1

2

)
�

(
3

2

)

�

(
α + 1 +

β

2

)[
1 − a

(1 − α)α

(β + α)(β − 1 + α)

] . (162)

We have calculated the value of α which maximizes G(α, β) numerically for a = 1/2 and for
different values of β between 1 and 7. The corresponding results for the lower bound cL are
plotted in figure 4.

For the upper bound we have to consider the function �(n), see equation (122). It reads

�(n) = nβ−2 βn − (β + 1)n2 − anβ[β + (β + 1)n2 − 2βn]

(1 − a[βnβ−1 − (β + 1)nβ])3
. (163)

We set, as for the lower bound, a = 1/2 and find the value n∗ at which supn∈(0,1) �(n) = �(n∗)
for different values of β between 1 and 7. For high values of β, �(n∗) must be computed
numerically. The upper bound may be calculated finally from equation (121) or (123),

cU√
1 − ac2

U

= 2
√

�(n∗). (164)

The results for the upper bound are plotted, together with the lower bounds and the numerical
solution for the speed, in figure 4 for a = 1/2. The numerical solution is seen to lie between the
upper and lower bounds, as it should, and it is a decreasing function with increasing values of β,

as expected. One could certainly try other trial functions g(n) and find other bounds. We have
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Figure 4. Forest fire models. Comparative plot between lower and upper dimensionless bounds,
the approximated variational solution and the numerical integration of equation (73) for the
dimensionless speed c of fire fronts as a function of parameter β, with a = 1/2. The numerical
values [43] for the speed lie between both curves, as they should, but the approximated variational
method fits very well with numerical solutions. As it is expected for forest fire models, the speed is
a decreasing function for increasing values of β. The speed computed by means of the approximate
variational method, equation (165), is shown as a full line [55].

used the same trial functions as in previous sections since they yield relatively simple results
which illustrate fairly well the usefulness of the hyperbolic variational principle. It is also seen
from figure 4 that the new upper bound cU derived here is much better that cmax = 1/

√
a = √

2
(see equation (106)).

4.4.2. Approximate variational method. At the beginning of this subsection we have
mentioned that the linearization and MSA approaches (sections 3.1 and 3.2) cannot be applied
to the case under consideration. This is why we have made use of the variational approach
(section 3.3). The Hamilton–Jacobi method (section 3.4) does not hold in this case because
the source term (159) does not fulfil the conditions (129). However, it is very interesting to
show that the approximate variational method (section 3.5) yields a very good prediction for
the speed as compared to numerical results [55].

For the source term (159), the approximate speed may be determined from equation (143)

c√
1 − ac2

� max
α∈D

{
2α

∫ 1
0 gnβ−1[1 − af ′] dn∫ 1

0 g[1 − af ′] dn

}
, (165)

where from equation (144) one has

g = exp

(
− α2

1 − ac2

∫
nβ−2 [1 − af ′]2

1 − n
dn

)
, (166)

and f ′ ≡ df/dn = βnβ−1 − (1 + β)nβ. For illustration purposes, consider, e.g. the case
a = 1/2. The integrals in equations (165) and (166) can be performed numerically, and from
figure 4 it is seen that this result is more accurate than the bounds found above.
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4.4.3. Renormalization group technique. Figure 4 corresponds to the case a = 1/2 and
different values of β. In this case, it is not possible to apply the renormalization-group (RG)
approach (section 3.6), because no exact solution ρ(z) is known for arbitrary β. However, an
exact solution exists for β = 2, a value for which the source function (159) has been applied
to model the spread of microorganisms [66]. Thus, the RG method can be used to assess the
results above [56]. Moreover, we shall see that it yields a much simpler and useful expression
than the approximate result (165).

As explained in section 3.6, the RG approach can be applied by treating the reduced
delay a as a smallness parameter, so that it introduces a small perturbation to the usual, non-
delayed equation. Thus, we are treating the HRD equation (73) as a perturbation of the
parabolic equation (68). This is indeed reasonable, because the HRD equation is a first-order
approximation to the full time-delayed equation (see, e.g. section 2.1) and, on the other hand,
the RG technique is nothing but a first-order approach to the problem ∂tρ = N(ρ). The
unperturbed equation for β = 2 is thus given by equations (73) and (159) with a = 0,

∂tρ0 = ∂xxρ0 + ρ2
0 (1 − ρ0). (167)

It is easily seen that this equation has a solution with the profile

ρ0(z) = 1

1 + ez/
√

2
, (168)

where z = x − c0t and c0 = 1/
√

2. The perturbation operator is easily found,

δN{ρ0} ≡ N{ρ0} − Na=0{ρ0}
= a[f ′(ρ0)∂tρ0 − ∂ttρ0]

= a

[
−c0(2 − 3ρ0)ρ0

dρ0

dz
− c2

0
d2ρ0

dz2

]
. (169)

Then, by choosing the weight function ϕ(z) = ez/
√

2 we can perform the necessary integrations
in equation (143), and equation (145) yields

cRG � 1√
2

−
√

2

40
a + O(a2). (170)

In figure 5 we compare the results of numerical simulations of equations (23) and (159)
with β = 2 to those from the approximate method (equation (165)), from the RG approach
(equation (170)), and also with the lower and upper bounds derived above. In contrast to
figure 4, in figure 5 we consider different values of the reduced delay a. The agreement of
the approximate method with the numerical simulations is clear again. The speed decreases
for increasing delay time, as was to be expected intuitively. It is not surprising that the RG
approach becomes less reliable at higher delays, whereas the approximate method does not,
since the RG approach is a first-order approximation valid only for small enough delays (see
equation (170)). However, the RG technique is rather appealing because it gives a simple result
(equation (170)) that is much more easy and practical to handle than that of the approximate
method (equations (165) and (166)). Let us stress, however, that the RG approach cannot be
applied for arbitrary β, because of the lack on an exact solution ρ0(z). Then, one must resort
to the approximate approach presented above.

4.5. Bistable systems

In several problems arising in biology (nerve conduction [67]) and physics (electrothermal
instability [68, 69]), it is found that the source term is given by

f (n) = n(1 − n)(n − σ) for 0 < σ < 1. (171)



924 J Fort and V Méndez

0.0

= 2

0.1 0.2 0.3 0.4 0.5

cRG
C

cU

RG theory

Approximate variational method

simulations

β 

c

a (dimensionless delay time)

0.680

0.685

0.690

0.695

0.700

0.705

0.95

1.00

1.05

1.10

1.15

1.20

Figure 5. Time-delayed front speed c for forest fires as a function of the dimensionless delay
time a. Dots are from numerical simulations [55]. The full line is the approximate prediction
(165), whereas the dashed one is the RG prediction (170). The dotted line is the upper bound. The
lower bound (not shown) yields c > 0.46.
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Figure 6. Bistable systems. Comparative plot between lower and upper bounds and the numerical
solution for the dimensionless speed of fronts c for (equation (171)), with a = 1/2 [43]. Note the
change of sign for the speed at σ = 1/2.

In these cases the system is called bistable. The reason is the following: the parameter σ has
a critical value σ = 1/2 for which the stability of the states n = 0, 1, is inverted and the front
changes its direction of propagation. For σ < 1/2 the front connects n = 0 to n = 1 and c > 0,
for σ = 1/2 we have c = 0 and finally, for 1/2 < σ < 1 the front connects n = 1 to n = 0
and c < 0. This can be seen in figure 6. Bounds for the speed can be derived [43] by using the
variational method (section 3.3) and choosing the trial function g(n) = (1 − n)2−2σ n2σ , as in
the cubic HRD model (section 4.3). By following the same steps as in previous sections, one
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now obtains obtain the following lower bound

cL = 1 − 2σ√
2[1 − (a/5)(1 − 2σ + 2σ 2)]2 + a(1 − 2σ)2

, (172)

which holds for any σ ∈ (0, 1). Similarly, one may derive the upper bound analytically,
although it is extremely complicated and we prefer to present it graphically: figure 6 shows the
lower and upper bounds for a = 1/2, as well as the speed obtained from numerical simulations
of equations (73) and (171) [43]. According to figure 6, the upper bound from the variational
method is again better than the bound cmax = 1/

√
a = √

2 (equation (106)). It is worth to
note that in this case there is excellent agreement between the lower bound and the numerical
solution. In figure 6 we also observe the change of sign for the speed at σ = 1/2. The
restriction for the validity of the variational method a < M−1 for M = maxn∈(0,1) f ′(n) yields
to a < 3/(σ 2 − σ + 1), which imposes no additional restriction for a = 1/2.

4.6. Thermal wavefronts

Although in this review we focus our attention in reaction–diffusion systems, it is worth to
summarize some closely related work which applies to reaction–conduction systems. In such
cases, the main phenomena in the system are conductive energy transfer and a chemical reaction
with a nonnegligible reaction heat. Then, several authors have argued for the use of the thermal
equivalent of equation (9),

ρce

(
∂T

∂t
+ τ

∂2T

∂t2

)
= λ

∂2T

∂x2
+ F(T ) + τ

∂F (T )

∂t
−
[
F(T ) + τ

∂F (T )

∂t

]
T =T0

, (173)

where T is the temperature, ρ the density, ce the specific heat (per unit mass), λ the thermal
conductivity and

F(T ) = Qvch(T ) (174)

is the reaction heat Q times the reaction rate vch(T ). equation (173) can be derived, e.g. by
considering equation (6) instead of (7) and repeating the derivation in section 2.3. The last
term in equation (173) is introduced to solve the so-called cold boundary problem [2,44], with
T0 the room, initial temperature which, in this way, corresponds to an equilibrium state of
the system. This term is unimportant at higher temperatures, e.g. at the flame temperature in
combustion fronts, because of the exponential dependence of the reaction rate, which for some
combustion waves is given by a law of the Arrhenius form, e.g.

vch(T ) = An exp

[
− Ea

kT

]
, (175)

where A is the activation energy, n the fuel concentration (with n � n0 at the leading edge of
the front), Ea the activation energy, k Boltzmann’s constant and T the absolute temperature.

It is easy to apply the linearization analysis in section 2.1 to equation (173), yielding [21]

v � vL = 2
√

λQ(∂vch/∂T )|T =T0

ρce + τQ(∂vch/∂T )|T =T0

. (176)

If the relaxation time can be neglected (Fourier or classical heat conduction, τ → 0), this
reduces to

vL = 2

ρce

√
λQ

∂vch

∂T

∣∣∣∣
T =T0

, (177)
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which is the KPP result (see [29] and [2], p 281). Note that

τr ≡ ρce

Q(∂vch/∂T )|T =T0

(178)

has units of time and may be seen as a characteristic timescale of the reactive process. Thus

vL ∼
√

χ

τr
, (179)

with χ ≡ λ/ρce the thermal diffusivity. This agrees with the estimation for the speed of flames
derived by Landau [70] on the basis of the propagation of heat disturbances according to the
classical equation of heat transfer [71]. On the other hand, use of the Arrhenius law (175) into
equation (177) yields

vL = 2
√

λQAn0Ea/k

ρceT0
exp

[
− Ea

2kT0

]
. (180)

Recall that this gives a lower bound only. Simulations show that it agrees with the selected
speed v for low chemical to thermal energy ratios Ea/kT [44]. Some open problems that
deserve future attention are the application of the time-delayed solution (176) to (i) combustion
fronts in which the delay time τ takes care of the ignition delay that is observed experimentally
[72], and (ii) more realistic forest fire models (see section 4.4) in which the delay time is related
to the time needed to ignite a green tree [16, 73].

An equation of the type of (173) has been also applied to analyse the thermal behaviour
of a superconductor device that presents electrothermal instability. In this application, one
considers an equation for the dimensionless temperature T̃ of the form

∂T̃

∂t
+ τ

∂2T̃

∂t2
= D

∂2T̃

∂x2
+ F(T̃ ) + τ

∂F (T̃ )

∂t
(181)

with a piecewise linear reaction term

F(T̃ ) = ω[−T̃ + θ(T̃ − T̃ ∗)], (182)

which approximately accounts for heat losses to the bath and the Joule effect in a
superconducting wire (θ is the Heaviside step function and T̃ ∗ the dimensionless critical
temperature) [74, 75, 68]. For this specific source term, it has been possible to derive an
explicit solution by means of Fourier transforms, yielding the front speed [74]

c = − 2√
ωD

1 − 2T̃ ∗

(1 + ωτ)

√
1 − (1 − 2T̃ ∗)2

. (183)

Note that this is a thermal example of bistable system (section 4.5), because the sign of c depends
on the value of T̃ ∗ [75]. For τ → 0, one recovers the classical result [75]. Méndez and Compte
have proposed a particular system where an experimental check of equation (183) could be
made: a Ballast resistor consisting of a superconducting wire carrying a constant current and
surrounded by a cold heat bath at a temperature lower than that of the superconductor. By
keeping one end of the wire at a constant temperature higher than the critical one and the other
end at the bath temperature, if hyperbolic heat transport applied then the observed front speed
would be different than that predicted by the classical theory [74].

Galenko and Danilov [19, 20] have considered a time-delayed equation with the form of
equation (173),

ρce

(
∂T

∂t
+ τ

∂2T

∂t2

)
= λ

∂2T

∂x2
+ F(T ) + τ

∂F (T )

∂t
(184)
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with the source term (174)

vch(T ) = δ(T − TQ), (185)

with δ the Dirac delta, to describe fast solidification fronts. Then, Q appearing in equation (174)
is the solidification heat per unit volume and TQ the solidification temperature at which the
phase transition occurs. In this framework, one may derive the solidification front speed as
a function of the initial supercooling in the system [19]. In their very recent work, Galenko
and Danilov find a discrepancy (at high supercoolings) of about 8% relative to the classical
predictions (τ → 0) by using known parameter values for the solidification of pure Nickel.
Experimental values refer to needle-like crystals or dendrites, so that the simple 1D model
summarized above is not realistic. This will require models with several dimensions and this
is an interesting area which deserves further study.

5. HRD equations for several species

Consider a system with two variables n and m undergoing reaction–diffusion dynamics
([43], section 5.1). In biological applications, they may represent the predator and prey
population densities [28], those of farmers and hunter-gatherers in the expansion of agricultural
communities [57], of the infected and susceptible individuals in the spread of a pandemic [1],
etc. Such systems of equations are called Lotka–Volterra equations. Two-variable systems
are also important in the propagation of domain walls in superconductors: then n corresponds
to the superconducting order parameter, m to the gauge-invariant vector potential and they
follow Ginzburg–Landau equations [60] which have in fact the same mathematical form of
Lotka–Volterra equations.

Let us consider the system of two species{
τntt + nt = Dnxx + F(n) + τF ′(n)nt + γ nm,

τ̂mtt + mt = D̂mxx + F̂ (m) + τ̂ F̂ ′(m)nt − γ̂ nm,
(186)

which is a pair of coupled HRD equations (see equation (9)). The superscript ˆ refers to
the species with number density m, and the last term in these equations corresponds to the
interaction between both species. This simple term means that in, for example, a predator–prey
system with τ = τ̂ = 0, the predators increase their population density n because of their
interaction with preys, which in turn experience a decrease in their population density m. It
should be emphasized that here we are assuming that the interaction rate γ nm is small compared
to the other terms, since otherwise higher-order terms in n2m, etc could be important in the
description of the interaction among both species. For τ = τ̂ = 0 we recover the usual (or PRD)
Lotka–Volterra system with spatial inhomogeneities (see chapter 12 in [28]). The wavefront
speed problem for equations (186) has been tackled [43] by extending the linear and variational
theories in section 3 in the present review. As said above, we consider HRD equations, thus
the results applying to PRD equations will follow in the limit τ → 0. In order to illustrate our
procedure, let us consider for a moment a specific problem (which will be analysed in more
detail in sections 6 and 7): in the neolithic transition, the population wavefronts of farmers
(with number density n) traveled into areas where they encountered a population of preexisting
hunter-gatherers with a number density m that is usually assumed to be approximately uniform,
say m0 [57,76]. Both populations mixed to some extent, and this interaction is regarded as the
cause of the gradients observed in the present spatial distribution of human genes [57]. We
may describe the process by following exactly the same procedure as in section 2 but making
use of the coupled equations (186) instead of equation (9): the procedure is essentially the
same as in section 3, so we shall only give the main steps. Since the problem we have in mind
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is the expansion of, say, farming communities, we consider the corresponding equation in the
leading edge of the front (n ≈ 0),

(1 − ac2)εzz + c[1 − af ′(0)]εz + [f ′(0) + γ̃ m0]ε = 0, (187)

where γ̃ = γ /k, and the rest of the notation is the same as in section 3. This equation
generalizes equation (76) and is decoupled from the evolution equation of species m.

Note that we cannot apply equation (79) with f ′(0) + γm0 instead of f ′(0), because the
parentheses multiplying εz in equation (187) does not contain f ′(0) + γm0 but only f ′(0),
thus equation (187) does not have the same form as equation (76). But it is clear that, as
in section 3.1, the asymptotic solutions near n = 0 are given by equation (78), with λ± the
solution to the characteristic equation, which now reads

(1 − ac2)λ2 + c[1 − af ′(0)]λ + f ′(0) + γ̃ m0 = 0. (188)

As in section 3.1, we require Im(λ) = 0 in order to prevent the solution from oscillating. This
yields

c � 2

√
f ′(0) + γ̃ m0

[1 + af ′(0)]2 + 4aγ̃m0
. (189)

This result reduces, as it should, to the lower bound (79) for noninteracting species (γ̃ = 0).

On the other hand, in the absence of a delay time τ (i.e. a = τk = 0) we obtain

c � 2
√

f ′(0) + γ̃ m0, (190)

and if we assume that both the effect of the interaction and that of the delay are negligible, we
recover the Fisher–KPP result for PRD equations, namely c � 2

√
f ′(0). Equation (190) could

have been obtained simply from the fact that in the non-delayed (or PRD) model τ = 0 the first
equation (186) is nothing but a PRD equation with f (n) + γ nm instead of f (n), and we have
assumed that m ≈ m0 near n = 0. The PRD limit (190) agrees with previous research, where
it has been applied to predator–prey systems (see equation (12.10) in [28]; see also [77]) and
to the propagation of interfaces in superconductors3.

It should be noted that equation (189) provides just a lower bound, simply because it is
based on the linear approach (section 3.1). We now make use of the variational approach to
HRD equations (section 3.3). First of all we note that we cannot make use of equation (125)
with f ′(0) + γm0 instead of f ′(0), because the evolution equation corresponding to the first
equation (186) is

(1 − ac2)nzz + c[1 − af ′(n)]nz + f (n) + γ̃ m0n = 0, (191)

and this is not reducible to an equation of the type of (73) since (f (n)+γ̃ m0n)′ = f ′(n)+γ̃ m0 �=
f ′(n). Thus we have to generalize the approach in section 3.3. Since the steps are exactly the
same as there, it will suffice to sketch the derivation. Equation (94) is generalized into

(1 − ac2)p
dp

dn
− c[1 − af ′(n)]p + f (n) + γ̃ m0n = 0. (192)

We multiply this by g/p, with p ≡ −nz and g > 0, and integrate by parts. As before,
h = −g′ > 0 and we apply the general inequality (r + s) � 2

√
rs to get rid of p. This finally

yields

c√
1 − ac2

� 2

∫ 1
0

√
(f (n) + γ̃ m0n)gh dn∫ 1

0 g(1 − af ′(n)) dn
, (193)

3 Note the different units and the minus sign in that equation, which arises because of the minus sign in the term −q2f

in equation (2) in this reference q2, Q2∞ and f in this reference correspond to γ̃ m, γ̃m0 and n here, respectively, and
we have considered the case of small reduced interaction rate γ̃ m0 (small values of Q2∞ in [60]) since otherwise the
interaction rate would be fast enough to modify m and n in very short timescales; thus the approximation m ≈ m0
would break down even in the leading edge of the front (i.e. near n = 0).
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which generalizes equation (97).
We can now derive lower and upper bounds from the variational analysis. If we consider

again the trial functions g = nα−1, equation (193) becomes

c√
1 − ac2

� 2
√

1 − α

∫ 1
0 nα−3/2

√
(f (n) + γ̃ m0n) dn∫ 1

0 nα−1[1 − af ′(n)] dn
. (194)

In the limit α → 0, the integrands diverge at n = 0, thus only the singular point will contribute.
We expand the integrands in Taylor series near n = 0, and only the leading term in the
expansions will survive. Thus, assuming f ′(0) �= 0,

c√
1 − ac2

� 2
√

1 − α

∫ ε

0 nα−3/2
√

f ′(0)n + γ̃ m0 dn∫ ε

0 nα−1[1 − af ′(0)] dn
. (195)

Performing the integrals and taking the limit α → 0 we obtain

c � cL = 2

√
f ′(0) + γ̃ m0

[1 + af ′(0)]2 + 4aγ̃m0
, (196)

in agreement with the result (189) from the linear analysis. Thus also for interacting species,
the linearization and variational methods yield the same lower bound. We now derive upper
bounds. Since the only change of equation (193) relative to (97) is that f + γ̃ m0n appears
instead of f , we define µ(n) and α(n) performing this change in the corresponding definitions
in section 3.3.2, i.e. µ(n) = g[1 − af ′] as before and α(n) = (f + γ̃ m0n)h/[g(1 − af ′)2].
We have then, from equations (193) and (113),

c√
1 − ac2

� 2 max
g

[∫ 1
0 [(f + γ̃ m0n)h/(1 − af ′)] dn∫ 1

0 g(1 − af ′) dn

]1/2

. (197)

We integrate by parts,∫ 1

0

(f + γ̃ m0n)h

1 − af ′ dn = − g(1)γ̃m0

1 − af ′(1)
+
∫ 1

0
g

(
f ′ + γ̃ m0

(1 − af ′)2
+

af ′′(f + γ̃ m0n)

(1 − af ′)3

)
dn. (198)

We note that, in contrast to what happened in the case of a single species (equation (119)),
the boundary term does not vanish. But recalling that g > 0 and the condition 1 − af ′ > 0
we have ∫ 1

0

(f + γ̃ m0n)h

1 − af ′ dn �
∫ 1

0
g

(
f ′ + γ̃ m0

(1 − af ′)2
+

af ′′(f + γ̃ m0n)

(1 − af ′)3

)
dn, (199)

and, in order to get an upper bound independent of g,∫ 1

0

(f + γ̃ m0n)h

1 − af ′ dn � sup
n∈(0,1)

[
f ′ + γ̃ m0

(1 − af ′)2
+

af ′′(f + γ̃ m0n)

(1 − af ′)3

] ∫ 1

0
g(1 − af ′) dn. (200)

Thus,

�(n) ≡ f ′ + γ̃ m0

(1 − af ′)2
+

af ′′(f + γ̃ m0n)

(1 − af ′)3
. (201)

If we assume that the source function f is continuous and that f ′′ < 0, after recalling again
the condition 1 − af ′ > 0, we see that the second term in �(n) is negative (it only vanishes
at n = 0, 1), whereas the first term decreases for increasing values of n. Thus,

sup
n∈(0,1)

�(n) = f ′(0) + γ̃ m0

(1 − af ′(0))2
, (202)
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and we have the simpler result

c � cU = 2

√
f ′(0) + γ̃ m0

[1 + af ′(0)]2 + 4aγ̃m0
, (203)

which reduces to equation (125) in the limit γ̃ → 0, as it should, and holds provided that f

is continuous and concave in (0, 1). Under these assumptions, our upper bound is the same as
the lower one (196) and the asymptotic speed of the fronts for interacting species can also be
predicted without any uncertainty,

c = 2

√
f ′(0) + γ̃ m0

[1 + af ′(0)]2 + 4aγ̃m0
. (204)

If the delay time is not taken into account (PRD approach, a = 0), this reduces to

c = 2
√

f ′(0) + γ̃ m0, (205)

in agreement to previous work ([77] and footnote 3) . Figure 7 is a comparison of the analytical
result (205) for the expansion of species n with numerical integrations for the case τ = 0. The
numerical integrations were performed [43] by assuming that initially n = 1 in a localized
region and n = 0 elsewhere, and m = m0 everywhere; the equations used are (186) in the
same variables as equation (73), i.e.

antt + nt = nxx + f (n) + af ′(n)nt + γ̃ nm0,

âmtt + mt = mxx + f̂ (m) + âf̂ ′(m)mt + ˆ̃γ nm0,
(206)

where â = k̂τ̂ , ˜̂γ = γ̃ /k̂ and, analogously to equation (73), 1/k̂ is a characteristic reactive time
for species m. In the simulations we have assumed for definiteness that â = a, ˜̂γ = γ̂ , as well
as logistic growth functions, i.e. f (n) = n(1 − n) and f̂ (m) = m(1 − m). Figure 8 compares
the predictions of equation (204) to the simulations of equations (206) for τ �= 0. There is
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Figure 7. PRD Lotka–Volterra equations. Comparison between analytical results and numerical
simulations for the dimensionless front speed c, as a function of the interaction parameter γ̃ m0 [43].
The dots are results from numerical simulations of equations (206) for the PRD case (τ = 0) and
f ′(0) = 1. The solid line is prediction given by equation (205).
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Figure 8. HRD (or time-delayed) Lotka–Volterra equations. Comparison between analytical
results and numerical simulations for the dimensionless front speed c in , as a function of a = τk

(for γ̃ m0 = 0, γ̃ m0 = 1/2, and γ̃ m0 = 1) [43]. The symbols are results from numerical
simulations of equations (206), and the curves are the predictions form equation (204). There is
excellent agreement in all cases.

good agreement in both the classical (figure 7) and the time-delayed (figure 8) cases. By
comparison to the results for γm0 = 0, it is also seen that the interaction among both species
leads to a faster wavefront, as was to be expected since the last term in the first equation (186)
corresponds to a numeric increase in the expanding species. This was conjectured in [22] and
is why the front speed increases with increasing values of γ̃ m0. Comparison to observations
is presented in section 7.

Before closing the topic of solutions to the front speed problem, let us mention that some
authors have applied several-species HRD equations to thermal transport. Then, the role of
the species concentrations n and m is played by the temperatures T and T̂ of a two-component
mixture. If the symbolˆrefers to an inert component to which heat is transferred from the other
component, the simplest analogues to equations (186) being{

ρce(τTtt + Tt ) = λTxx + F(T ) + τF ′(T )Tt − α(T − T̂ ),

ρ̂ĉeT̂t = −α(T − T̂ ),
(207)

where the last term in both equations corresponds to energy-relaxation process. For a single-
temperature system, the first of these equations reduces to equation (173). Equations of the
type of (207) have been applied by Qiu and Tien [78] and Sobolev [79] to laser heating of
metals. Then, heat is mainly transported by electrons (temperature T ), which lose energy to
the lattice (temperature T̂ ), and the source term F(T ) corresponds not to a chemical reaction
but to a laser heat source. For combustion waves in a fuel diluted in an inert component, F(T )

has the Arrhenius form (174) and (175) and it is easily seen, in the same way as in the analysis
in section 4.5, that the front speed satisfies [21]

v �
2
√

λ(Q(∂vch/∂T )|T =T0 − α)

ρce + τ(Q(∂vch/∂T )|T =T0 − α)
. (208)

which reduces to equation (176) for single-temperature systems. Recall that for parabolic,
classical transport, that equation in turn reduces to the KPP (177) and Landau (179) results.
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6. Comparison to experiment: single-species models

As mentioned at the beginning of section 3, HRD equations have a comparatively much shorter
history than their PRD counterparts and, as happened in the first applications of PRD equations,
have for the moment been applied essentially to biological processes. This is essentially
due to the availability of observations which cannot be satisfactorily accounted for within
the classical, PRD approach. Below we review some topics for which direct comparison of
theoretical predictions to observational values has been already performed.

6.1. The neolithic transition in Europe

An interesting, direct application of the classical, PRD equation (12) arose after archaeological
data lead to the conclusion that European farming originated in the Near East, from where it
spread across Europe. The rate of this spread was measured [80], and a mathematical model
was proposed according to which early farming expanded in the form of a PRD wave of
advance [57]. Such a model provides a consistent explanation for the origin of Indo-European
languages [81], and also finds remarkable support from the observed gene frequencies [82].
However, this PRD model predicts a velocity for the spread of agriculture that is higher than
that inferred from archaeological evidence, provided that one accepts those values for the
parameters in the model that have been measured in independent observations [57]. Here we
will review an approach to this problem based on an HRD model [43].

In order to make comparison to experiment possible for this process, we need a more
detailed microscopic model than those presented in section 2. Such a model should (i) apply
to 2D spaces, (ii) provide a reasonable description of the microscopic motion of individuals
(thus allow for ‘jumps’ of unequal length, in contrast to, e.g. the model in section 2.1) and
(iii) relate the macroscopic parameters (τ and D) appearing in the HRD equation (9) (or, more
precisely, the extension of (9), derived below) to the microscopic properties of the system, so
that the values of τ and D can be estimated from the observations available. Such a model is
presented below, and its predictions are compared to observations [22].

Let p(x, y, t) stand for the population density (measured in number of families per square
kilometre), where x and y are Cartesian coordinates and t is the time. We assume that a
well-defined time scale T between two successive migration exists. We begin, as usual [28],
noting that, between the values of time t and t + T , both migrations and population growth
will cause a change in the number of families in an area differential ds = dx dy, i.e.

[p(x, y, t + T ) − p(x, y, t)] ds

= [p(x, y, t + T ) − p(x, y, t)]m ds + [p(x, y, t + T ) − p(x, y, t)]g ds, (209)

where the subindices m and g stand for migrations and population growth, respectively.
We denote the coordinate variations of a given family during T by �x and �y. The effect

of migrations on the evolution of p(x, y, t) will be derived here by means of a simple extension
of Einstein’s model of Fickian diffusion [83]. The migration term in equation (209) can be
written as

[p(x, y, t + T ) − p(x, y, t)]m ds = ds

∫ +∞

−∞

∫ +∞

−∞
p(x + �x, y + �y, t)

φ(�x, �y) d�x d�y − ds p(x, y, t), (210)

where φ(�x, �y)ds is the fraction of those families lying at time t in an area ds, centred at
(x + �x, y + �y), such that they are at time t + T in an area ds, centred at (x, y). Note that the
last term in equation (210), which corresponds to the families leaving ds, may be alternatively
written as an integral, analogous to the positive term (incoming families). Both terms allow
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for jumps of zero length (�x = �y = 0), but the corresponding contributions cancel out, as
they should. Obviously,∫ +∞

−∞

∫ +∞

−∞
φ(�x, �y) d�x d�y = 1, (211)

and, assuming for simplicity that the low-scale migration is isotropic,

φ(�x, �y) = φ(−�x, �y) = φ(�x, −�y) = φ(−�x, −�y) = φ(�y, �x). (212)

We Taylor expand the last term in equation (209),

[p(x, y, t + T ) − p(x, y, t)]g ds =
(

T F(x, y, t) +
T 2

2

∂F (x, y, t)

∂t
+ · · ·

)
ds, (213)

where F(x, y, t) is the change, due to births and deaths, in the local population density per
unit time. From equations (209), (210) and (213) we find

p(x, y, t + T ) − p(x, y, t) =
∫ +∞

−∞

∫ +∞

−∞
p(x + �x, y + �y, t) φ(�x, �y) d�x d�y

−p(x, y, t) + T F(x, y, t) +
T 2

2

∂F (x, y, t)

∂t
+ · · · (214)

We now assume that T , �x and �y are small enough in comparison with the measured
time intervals and distances (T � t , �x � x and �y � y) so that both sides of equation (214)
may be approximated by their second-order Taylor expansions,

T
∂p

∂t
+

T 2

2

∂2p

∂t2
= p

∫ +∞

−∞

∫ +∞

−∞
φ(�x, �y) d�x d�y +

∂p

∂x

∫ +∞

−∞

∫ +∞

−∞
φ(�x, �y)�x d�x d�y

+
∂p

∂y

∫ +∞

−∞

∫ +∞

−∞
φ(�x, �y)�y d�x d�y

+
∂2p

∂x2

∫ +∞

−∞

∫ +∞

−∞
φ(�x, �y)

�x2

2
d�x d�y

+
∂2p

∂y2

∫ +∞

−∞

∫ +∞

−∞
φ(�x, �y)

�y2

2
d�x d�y

+
∂2p

∂x∂y

∫ +∞

−∞

∫ +∞

−∞
φ(�x, �y)�x�y d�x d�y

−p + T F +
T 2

2

∂F

∂t
. (215)

Making use of equations (211) and (212), this reduces to

∂p

∂t
+

T

2

∂2p

∂t2
= D

(
∂2p

∂x2
+

∂2p

∂y2

)
+ F +

T

2

∂F

∂t
, (216)

where we have made use of the definition

D = 1

4T

∫ +∞

−∞

∫ +∞

−∞
φ(�x, �y)�2 d�x d�y, (217)

with � =
√

�x2 + �y2.

Note that equation (216) is the HRD equation (9) in 2D, with relaxation time

τ = T

2
, (218)

which is exactly the same as that in the very simple model in section 2.1 (equation (11)) and
in the ID Dirac-delta waiting time distribution model in section 2.6 (equation (60)). This
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agreement supports the validity of equation (218): although the 1D model in section 2.1 holds
under a stronger assumption (‘jumps’ of equal length), it does correspond to the case of isotropic
jumps here assumed (whereas e.g. the model in section 2.2 does not). This point is extremely
important because, as it will seen below, having the correct microscopic expression for τ

(equation (218) in this application) is absolutely necessary in order to compare to experimental
observations. This is why the derivation of the HRD equation above, which is additional to
those in section 2, is indeed needed for the system under consideration in this section. The
former derivation of the HRD equation, in contrast, for example, to those in sections 2.3 and 2.4,
makes it also possible to note that in the application we are dealing with, the interpretation of
τ is completely different from that in a reacting-diffusing gas mixture (where collisions have a
negligible duration in comparison with the travel time between two subsequent collisions). The
time interval T between two successive migrations is the sum of the time of travel (which may
be of the order of some days or weeks) and the time of ‘residence’, i.e. the time interval between
the arrival of a family and the subsequent migration (presumably of about one generation [84]).
Therefore, in our case T is approximately the time of residence.

We will assume that the population growth can be described by

F = ap

(
1 − p

pmax

)
, (219)

where a is the initial growth rate and pmax is the saturation density. Equation (219) is the logistic
growth-function (see the discussion at the beginning of section 3), and it compares favourably
to a wealth of experimental results [38]. From equations (74) and (126), equation (216)
with p = p(r) and r =

√
x2 + y2 leads to wavefronts with asymptotic speed of propagation

(∂2p/∂x2 + ∂2p/∂y2 = ∂2p/∂r2 + 1/r∂p/δr → ∂2p/∂r2 as r → ∞)

v = 2
√

DdF/dp|p=0

1 + (T /2)dF/dp|p=0
= 2

√
aD

1 + aT /2
. (220)

This result would not change if we considered an exponential growth-function (F � ap) in
the leading edge of the front (p � 0). In the limit T → 0, equation (220) becomes

vT →0 = 2
√

aD, (221)

which is the basis of the classical wave-of-advance theory of the neolithic transition in
Europe [57]. By comparing to equation (220), we note that the delay time T slows down
the wavefront, as it should. The microscopic delay time T is equivalent to the relaxation time
τ = T/2 in the macroscopic description in sections 3.3 and 3.4.

In a different context, wavefronts for the autocatalysis A+B → A+A have been studied for
a reaction term of the form F = kp(p0 −p), where p is the density of A, p0 is the total density
and k is the rate constant. In this case equation (220) can be written as vT →0/v = 1+(T /2)kp0,

i.e. an additional term proportional to the rate constant is predicted. Such a term has been
proposed before [17], although no explicit form for it had been derived.

We return to the problem under consideration. Equation (217) may be written as

D = 1

4

�̄2

T
, (222)

in fact a well-known result for 2D diffusion. Here �̄2/T is the mean square displacement
during the time interval T that separates two successive migrations. Previous approaches did
not take the factor 1/4 in equation (222) into account but relied on the approximation [57]
D ≈ �̄2/T .

The front velocity for the expansion of agriculture can be predicted from equation (220)
provided that independent estimations for the values of T , a and D are available. As in [57],
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Figure 9. Comparison between empirical evidence and theoretical models for the spread of
agriculture in Europe [22]. The points are the data already analysed in [57], distances being
measured as great circle routes from Jericho (the presumed centre of diffusion). Dates are
conventional radiocarbon ages in years Before Present. The full line is the regression by Ammerman
and Cavalli–Sforza (correlation coefficient r = 0.89) [57]. The other three lines are least-square
fits with slopes calculated from the classical wave-of-advance model with D ≈ �̄2/T (— · —)
and D = (1/4)�̄2/T (- - - -), and from the time-delayed model with D = (1/4)�̄2/T (· · · · · ·).
Here τ = 25 yr, a = 0.03 yr−1 and �̄2/T = 1700 km2 per generation.

we consider twenty-five years for the average generation, T = 25 yr. Let us, for the moment,
assume an initial growth rate of 3%, i.e. a = 0.03 yr−1 [82] and �̄2/T = 1700 km2 per
generation [57].

Figure 9 reproduces the archaeological data for the spread of the neolithic transition in
Europe [57]. Use of the values above into the approximation D ≈ �̄2/T (which was applied
in [57]) and equation (221) yields a front velocity of vτ→0 = 2.86 km yr−1. In contrast,
equations (221) and (222) yield a velocity of 1.43 km yr−1. The dashed-dotted and dashed
lines in figure 9 are the best fits with these slopes, respectively. The front speed implied by
D ≈ �̄2/T is much higher than that inferred from the data. The prediction from equation (222),
on the other hand, shows the usefulness of the wave-of-advance theory (provided that the factor
1/4 in equation (222) is included, which corresponds to 2D diffusion). Still, a lower front speed
is clearly implied. This may also be seen from the regression (full line) in figure 9 [57, 80]:
its slope yields a velocity of 1.00 km yr−1. When the same values for the parameters as above
are introduced into equations (220) and (222), one obtains a prediction of v =1.04 km yr−1.
Therefore, the prediction from equation (216) agrees very well with observations (see the
values of χ2 in figure 9).

Changing the value of the average generation leads to much the same result (e.g. we
might consider T = 28 yr [57] in equations (220) and (222), which yields v = 0.95 km yr−1).
In figures 10 and 11, the curves labelled with number 1 give the possible values of a and
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Figure 10. Predictions of the classical wave-of-advance model (equation (221)) [22]. The hatched
regions correspond to the range of allowed values for a and �̄2/T , according to the available
empirical evidence. Each curve is labelled with a number, which gives the considered front velocity
(in km yr−1). The three lower curves correspond to the D ≈ �̄2/T approximation, which was
used in [57]. The three upper curves correspond to the same model, but taking into account
equation (222) for 2D diffusion.
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Figure 11. The same as figure 10, but for the time-delayed wave-of-advance model (equation (220))
and an average generation of T = 25 yr [22]. It is seen that for almost all of the likely values of
the parameters a and �̄2/T (hatched rectangle), the predictions of the model are consistent with
the observed front velocity (1.0 ± 0.2 km yr−1).

�̄2/τ compatible (according to each one of the three models) with the observed speed of
1 km yr−1. In fact, the principal axis was preferred [81, 57] to perform a fit to the data (full line
in figure 9), but the two regressions (distances versus dates and vice versa) imply a velocity
range between about 0.8 and 1.2 km yr−1 [80]. In figures 10 and 11 we also include curves
corresponding to these velocities. The hatched regions in these figures correspond to likely
ranges of the parameters, and have been obtained as follows. Birdsell [85] was able to collect
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detailed evolution data of two human populations which settled in empty space. A fit of
these data (either to an exponential of to a logistic curve) yields a = 0.032 ± 0.003 yr−1,
with 80% confidence-level. Values for �̄2/T have been derived [57, 76] from observations
of Ethiopian shifting agriculturalists and Australian aborigines. A statistical analysis of these
values yields �̄2/T = 1544 ± 368 km2 per generation (80% C.L. interval). As we have
stressed, equation (222) should replace the approximation D ≈ �̄2/T in 2D situations. This
does not rely on any assumption. From figure 10, it is seen that use of this correction (three
upper curves), instead of the classical approach (lower curves), makes the non-delayed model
marginally consistent with the experimental range of a and �̄2/T values (hatched rectangle).
This shows that the first-order, or PRD, approach is compatible with the demographic data,
but only assuming extreme values for the parameters. In the second-order, or HRD, model
equation (220) holds, from which figure 11 follows. From this figure, we conclude that the
agreement between the available empirical data and our time-delayed model is very satisfactory,
in spite of the simplicity of the latter. This shows that it is not necessary to assume extreme
values of the measured parameters, provided that one is willing to accept the hypothesis that
a time interval T of about one generation separates successive migrations.

Finally, it is worthwhile to take into account that simulations of the neolithic transition
in Europe for the values a = 0.02 yr−1 and �̄2/T = 973.4 km2 per generation yield a front
velocity of v = 1.09 km yr−1 [76]. Making use of equation (221), the two-dimensional result
(222) and the above values for a and �̄2/T , we obtain vT →0 = 0.88 km yr−1. In fact,
in [76] an irregular lattice was considered. Since equation (222) can be easily generalized
into D = (1/2n)(�̄2/T ), where n is the number of dimensions and 2n is the number
of neighbours in a simulation lattice, we note that a decrease in the number of neighbors
corresponds to an enhancement of diffusion, as it was to be expected intuitively. If we take
into account that for the irregular lattice used in [76] the mean number of neighbors was 3.4,
making use of equation (221) we estimate vT →0 = 0.96 km yr−1, which is closer to the value
1.09 km yr−1 observed in simulations. Since the simulations in [76] included corrections due
to the acculturation of hunter-gatherers by farmers (which leads to a more rapid agricultural
expansion, as it will be shown in section 7.1), we conclude that there is reasonable agreement
between our results and the simulations. Of course, the more general result (220) cannot
be compared to those in [76], simply because that study is based on equation (216) in the
limit T → 0.

6.2. Other population invasions

For the neolithic transition in Oceania, there are also enough archaeological data so that a
front speed can be inferred [24]. The theory in the previous subsection assumes a continuous
description, in the sense that all areas of 2D space are equally suitable in principle for the
settlement of human populations. This may be an adequate approximation to a large-scale,
space-averaged description of the observed clustered distribution of sites. A continuous
description does not mean that all land areas are occupied by individuals: this is obviously
impossible for small enough scales, whatever the habitat and biological population one wishes
to consider. From this perspective, it is reasonable to try to apply the same model to island
expansions: in this case, settlements cluster on islands, whereas large sea areas are unsettled;
similarly, in mainland expansions settlements are also clustered near aquifer resources, whereas
large forest areas remain unsettled. However, the diffusion coefficient has now a different value,
which can again be inferred from anthropological observations, leading to good agreement with
the observed speed of about 5 km yr−1 [24], which is much faster than that for the neolithic
transition in Europe discussed in the previous subsection.



938 J Fort and V Méndez

Another application refers to mass-extinctions. Simulations using PRD models (T → 0)
and realistic parameter values for the diffusion of hunter-gatherers predict that it took humans
about �tT →0 = 1200 yr to colonize North-America, leading to the extinction of some
30 species of hervibores [86]. This is essentially consistent with archaeological evidence.
However, this approach neglects the delay time in the diffusion process. In the approximate,
single-species description above, we have from equations (220) and (221),

�t

�tT →0
= vT →0

v
= 1 + a

τ

2
, (223)

which using, as a first approximation, the same parameter values as above, yields about 1700 yr,
i.e. a correction of about 40% relative to the PRD value. Certainly, this topic deserves further
attention, both by means of time-delayed simulations which would generalize those in [86]
and by means of more accurate, several-species models such as those considered in section 6.
It is true, however, that if the diffusion effects dominate over the interaction among species,
several-species models may yield low corrections to the single-species one (several-species
models have been already applied to different process, see section 7.1).

Application of the time-delayed approach seems of utmost importance for future progress
in the topic of population invasions. In the near future, it seems likely that models in the
line of those reviewed will be compared to observations for different biological species. We
have also explained in section 5 that such models may be also relevant to a variety of physical
applications, such as combustion and solidification fronts and forest fires, for which direct
comparison to experiment has yet to be performed.

7. Comparison to experiment: several-species models

7.1. Time-delayed diffusion: application to the neolithic transition

The theoretical results for interacting species (section 5) can be applied to the waves of advance
of farming populations in the Indo-European neolithic transition. This problem has been
considered in section 6.1 above, but without taking into account the interaction between the
expanding farmers and the preexisting hunter-gatherers. This interaction is important, as
mentioned in section 5, because it is thought to have caused the genetic clines (or gradients)
observed in human populations across Europe and Asia [57]. This is why two-species models
have been proposed for this expansion. They have been applied by means of numerical
simulations [57,76] and, more recently, by an analytical approach ( [43], section 5.2). Recalling
that in section 3 we have introduced dimensionless variables, the speed of the front v is related
to the dimensionless speed c through equation (74), v = √

Dkc. We also recall that in section 5
we have introduced a = τk, f (n) = F(n)/k and γ̃ = γ /k. From equation (204) we have two
cases for interacting populations:

(i) PRD approach: it is based on the assumption that the role of the relaxation (or delay) time
can be neglected (τ ≈ 0). Then we have from equation (205)

vPRD = 2
√

D(F ′(0) + γm0), (224)

which becomes Fisher’s result 2
√

DF ′(0) for noninteracting species, as it should.
(ii) HRD approach: it takes the delay time τ into account. Then equation (204) applies,

vHRD = 2
√

D(F ′(0) + γm0)√
(1 + τF ′(0))2 + 4τγm0

. (225)
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In spite of the fact that the neolithic transition took place in 2D, our 1D results are still valid.
This can be seen from the fact that in 2D, the only change in equations (186) is that we have ∇2n

instead of nxx (and ∇2m instead of mxx). However, in polar coordinates ∇2n = ∂2/∂r2 + 1/r

∂n/∂r → ∂2/∂r2 as r → ∞, which corresponds to the asymptotic front (see p 281 in [28]):
it is the propagation of this front that we are interested in (we have assumed, as usual, that n

is independent of the polar angle θ ).
In order to obtain numerical predictions for both speeds (224) and ( 225), we need values for

the parameters appropriate to the neolithic transition. As explained in section 6.1, such values
have been derived from observations independent of the neolithic expansion and their mean
values are F ′(0) = 0.032 yr−1, D = 15.44 km2 yr−1 and τ = T/2 = 12.5 yr (the latter value
follows from the mean generation time T = 25 yr). On the other hand, from the observations
in [76] we have the mean values for the other two parameters m0 = 0.04 hunters km−1 and γ =
5.84 km2 hunter−1 yr−1 4. Use of these values into equation (224) yields vPRD = 1.6 km yr−1,
which is much higher than the speed derived from the archaeological record; in contrast
equation (225) yields vHRD = 1.1 km yr−1, which lies entirely within the experimental range,
namely 1.0 ± 0.2 km yr−1 (see section 6.1 as well as figure 9).

As reviewed in section 6.1, when the interaction among populations is not taken into
account, an HRD approach gives better results for the neolithic transition that the usual, PRD
approach. The work summarized here shows that his conclusion remains valid if the effect of
the interaction among farmers and hunter-gatherers is not neglected.

7.2. Replication and spread of viruses in growing plaques

In this section we review a multiple-species model of HRD equations that has been used to
describe virus infections [25]. The space-time dynamics of virus populations in a growing
plaque can be modelled by considering the interactions among three species, namely free
viruses (V ), host bacteria (B) and infected host bacteria (I ). These interactions can be
summarized by the reactions:

V + B
k1→ I

k2→ YV (226)

where k1 is the rate constant of adsorption of the viruses to the host bacteria, k2 is the rate
constant for death (or lysis) of infected bacteria, and Y is the production (or yield) of new
viruses per lysed host. We focus on the relevant factors by excluding, as usual, negligible
reactions such as virus desorption and their adsorption to infected hosts. The growth regions
of infected bacteria (also called plaques) will not be determined only by the reactions above,
since viruses must diffuse before reaching the uninfected bacteria. Let us model the process
by means of the set of differential equations:

T

2
∂ttV + ∂tV = Deff∂rrV − k1

[
V B +

T

2
∂t (V B)

]

+Yk2

[(
I

(
1 − I

Imax

))
+

T

2
∂t

{
I

(
1 − I

Imax

)}]
,

∂tB = −k1V B,

∂t I = k1V B − k2I

(
1 − I

Imax

)
, (227)

4 Note the units used in [76]: γ = 0.002 4 (tribe area)/(hunter generation) · (156 km)2/(tribe area) ·
1generation/25 yr = 0.23 km2 hunter−1 yr−1.
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Figure 12. One-step growth curve of virus T7 on E. coli [25]. This experiment corresponds to
an homogeneous medium (∂rrV ≈ 0) and negligible adsorption (∂tB ≈ 0) attained by dilution,
so that equations (227) become dI/dt = −k2I (1 − I/Imax) = −d(V/Y )/dt. The solution for
V is a logistic curve, namely, V = YImax/(1 + exp[−k2(t − T )]). Full line: least-square fit of
the experimental data points [92] to this equation. The full line has values k2 = 1.39 min−1 and
T = 18.4 min. Inset: T7 adsorption on E. coli, based on the data in [90]. The assay was carried out in
the presence of KCN, which is known to inhibit the phage reproduction during the time of adsorption.
In such conditions, equations (227) read dV/dt = −k1V B = dB/dt thus B = V +const. From the
initial concentrations and multiplicity in [90], we find const = 1.39×108 ml−1. The solution for V

satisfies g(V ) = ln((V + const)/V ) − ln((V0 + const)/V0) = const k1t. Full line: least-square fit
of the experimental data [90] to this equation. The slope yields k1 = (1.29±0.59)×109 ml min−1.

where Deff is the effective diffusion coefficient and Imax is the saturation density of host cells.
The terms in equation (227) containing Imax are necessary to describe—as an special case—
the so-called one-step logistic growth (figure 12), which will in turn allow us to determine
the value of k2. In the first of equations (227), T is the mean time between successive
jumps, here the mean time interval from the adsorption of a virus by an uninfected host
and the death of the thus infected cell (it is known experimentally that when this process is
completed, the virus progeny leave the cell). The time-delayed model (227) can be easily
derived, for example, from a microscopic description based on a Poisson process; then,
the hyperbolic model is not approximate but exact and the macroscopic relaxation time is
τ = T/2 (see section 2.5). Note that the first of equations (227), and the interpretation
of the delay time above, is analogous to equation (216) used in the single-species, time-
delayed theory of the neolithic transition in Europe, where T is the time interval between
two successive migrations (section 6.1). If the delay time were neglected (T = 0) equations
(227) would essentially reduce to the classical model of virus replication-diffusion in plaques
[87–89]. Let B0 stand for the initial concentration of bacteria, previous to the arrival of
viruses. We introduce the dimensionless variables B̄ ≡ B/B0, V̄ ≡ V/B0, Ī ≡ I/B0,

t̄ ≡ k2t, T̄ ≡ k2T , r̄ ≡ r
√

k2/Deff , and κ1 ≡ k1B0/k2. As explained in section 3, we
look for front solutions by assuming the concentrations depend only on z̄ ≡ r̄ − c̄t̄ , where
c̄ ≡ c/

√
Deffk2 and c is the front speed, and linearizing the system (227) in the wavefront

edge z̄ → ∞, (V̄ , B̄, Ī ) = (εV , 1 − εB, εI ) ≈ (0, 1, 0), with ε = ε0e−λz̄ . For a solution
(εV , εB, εI ) �= (0, 0, 0) to exist, the determinant of the matrix corresponding to the linearized
form of equations (227) must vanish. This yields the characteristic equation for our problem,
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namely

c̄λ3

(
−1 +

T̄

2
c̄2

)
+ λ2

{
−1 +

[
1 +

T̄

2
(κ1 + 1)

]
c̄2

}
+ λc̄

{
1 + κ1

[
1 − T̄

2
(Y − 1)

]}
= 0.

(228)

If the values of the parameters are known, this equation can be solved numerically in order to
find out the dimensionless front speed c̄. This is the minimum value of c̄ such that there exists a
stable front (i.e. such that there all three roots for λ are real, and at least one of them is positive).
From the one-step growth curve of virus T7 on E. coli host cells (figure 12), we obtain a yield of
Y = 34.5, (the first few dots in figure 12 refer to infected bacteria [124]), a lysis rate constant
of k2 = 1.39 min−1 and a latent period of T = 18.4 min. The adsorption rate constant k1 for
T7 is not so well-known and has been sometimes approximated to that of the T1 strain [88].
In fact, there are some experimental data for T7 available [90], from which we estimate k1

to be in the range from 0.70 × 10−9 to 1.88 × 10−9 ml min−1 (figure 12, inset).The value of
k1 is thus rather uncertain. However, we will see below (especially in figure 13) that, for a
wide interval of bacterial concentrations, the predictions are essentially the same throughout
this range of values for k1. The effective diffusion coefficient for a solute (viruses in our case)
dispersing through a continuous medium (agar in our system) in the presence of a suspension
of spheroids (host bacteria) which adsorb the solute is given by Fricke’s equation [91],

Deff = D
1 − f

1 + f/x
, (229)

where f ≡ B0/Bmax is the concentration of bacteria relative to its maximum possible value.
In the experiments [88, 92, 93], f was measured indirectly by noting that the bacterial
concentration B0 (and thus Bmax) depends on the initial nutrient concentration, and typical
bacterial concentrations were estimated in the range 107–108 ml−1 [88]. In equation (229),
D is the diffusion coefficient in the absence of suspended particles, and x takes care of their
shape according to

x = −1

1 − 1

3

(
2

1 − M/2
+

1

M

) , (230)

where

M = 1

sin2 φ′ − 1

2

cos2 φ′

sin3 φ′ ln

(
1 + sin φ′

1 − sin φ′

)
(231)

and cos φ′ = b/a with a the dimension of the suspended spheroids (cells) along their axis
of symmetry and b their size along the other axis. Fricke’s results have been found to agree
very well with experimental observations of blood cell suspensions [91, 94]. For E. coli,
a/b ≈ 4.0 [95], which yields x = 1.67 . Also in equation (229) D is the diffusion coefficient
of the virus through agar in the absence of bacteria, which can be approximated to that of
P22 [88] because it is very similar to T7 in size and shape [96], D = 4×10−8 cm2 s−1 [97]. This
completes the estimations of the values for all the parameters in the model from independent
experiments. Now one may compare the predictions both from the time-delayed model
(T = 18.4 min) and from the classical one (T = 0) to the observed infection speeds as a
function of the relative bacterial concentration f , without making use of any free parameter.

In figure 13 we compare the predictions to the experimental values. The classical approach
(upper curves in figures 13(a) and (b)) predicts speeds that are clearly inconsistent with
the observed ones, as noted in the literature [87, 88], specially for high host concentrations
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Figure 13. (a) Speed of the growth of virus plaques as a function of the bacterial relative
concentration f [25]. Upper curves, predictions of the classical model [88], i.e. equations (227) in
the present paper with T = 0. Lower curves, time-delayed model (T = 18.4 min, from figure 12).
Symbols: experimental data [88]. The open and closed data symbols refer to initial bacterial
concentrations of 107 and 108 ml−1, respectively. The mean value and error for f = 0.2 has been
computed by taking into account that there are some additional experimental data available for
f = 0.2 in [92,93]. (b) The two lower curves are not distinguishable from each other at this scale,
showing that the uncertainty in the value of k1 (figure 12, inset) has very little effect on the predicted
speed. It is seen that the time-delayed approach is able to explain the experimental results without
making use of any free parameter.

(figure 13(b)). In contrast, the time-delayed model (lower curves in figure 13) yields good
quantitative agreement with the observations [25].

It is worth to stress that, contrary to conventional wisdom, agreement to experiment does
not need to incorporate biological factors such as host aging [88] but can be attained by a
purely physical model if proper care is taken of the diffusion delay time (T in equations (227)),
which is a well-known physical effect [5]. Intuitively, we can understand the behaviour of the
infection speed as follows. Consider first low values of the relative bacterial concentration f.

The higher the value of f , the more viruses will be adsorbed by cells per unit time. This is
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why the front speed increases for moderate values of f (left side of figures 13(a) and (b)).
Here, the propagation of the front is reaction-controlled. This behaviour can only continue up
to some intermediate value of f, however, because if bacteria occupy a large portion of the
volume, then there is little space available and the mean virus dispersion distance is diminished.
This will effectively reduce the spread of viruses. For high enough bacterial concentrations,
therefore, the infection speed decreases with increasing values of f (right side of figures 13(a)
and (b)). This may be referred to as the diffusion-controlled regime of the virus infection
propagation. This model provides a satisfactory explanation for the growth of virus plaques,
which is a basic problem in biophysics. It is also important because it provides an alternative
way to predict and recognize virus strains, as well as their evolution [98].

8. Comparison to experiment: other kinds of time-delayed reaction–diffusion equations

Most of this review has dealt with hyperbolic equations. In this case, time derivatives up to
second order appear in the reaction–diffusion equations (see, e.g. equation (9)). The simple
mathematical form of hyperbolic equations allows to derive some analytical results for the speed
of fronts (section 3), so that they have attracted a lot of attention in recent years. However,
in some experimental situations other kinds of time-delayed reaction–diffusion equations are
necessary. Therefore, we devote this section to a brief description of such models.

8.1. Infinite-term expansion model of the neolithic transition

In some systems such as those driven by a Poisson processes (section 2.5), HRD equations
provide an exact description of the system dynamics. However, in other cases (e.g.
sections 1.1–1.4 and 6.1), hyperbolic equations are derived by keeping some of the terms that
are neglected in classical, or parabolic, reaction–diffusion. This leaves doubt on the possible
importance of the additional, neglected terms. In particular, application of such a model to
human population expansions leads to corrections higher than 40% with respect to the usual,
non-delayed model (see sections 6.1 and 6.2). Since this modification is very large, there is
no reason a priori to expect that keeping only a few terms will give quantitatively trustworthy
results. It is thus necessary to analyse carefully the role of all higher-order terms, and we will
review this point here [23]. We will focus our attention on a specific application of the model,
namely the population expansion in the European neolithic transition, in order to determine
whether the conclusions in section 6 remain valid or not when additional terms are included.
However, we would like to remark that the formalism we will review here is valid in general,
and should be useful in the future to study other systems dealing with time-delayed approaches
to reaction–diffusion.

As in section 6.1, we make use of Einstein’s approach to diffusion in 2D and allow for a
reactive process, but keep all higher-order terms in equation (215). This immediately yields

∂p

∂t
+

T

2!

∂2p

∂t2
+ · · · = 〈�x2〉

2!T

∂2p

∂x2
+

〈�y2〉
2!T

∂2p

∂y2
+

〈�x4〉
4!T

∂4p

∂x4
+

〈�y4〉
4!T

∂4p

∂y4

+ 6
〈�x2�y2〉

4!T

∂4p

∂x2∂y2
+ · · · + F(p) +

T

2!

∂F (p)

∂t
+ · · · . (232)

In the application considered here, p(x, y, t) is the density of families per unit area at point
(x, y) and time t , T is the time scale between two subsequent migrations, 〈�x2〉 is the
mean square displacement in the x-direction during T , etc. The first series in the right-
hand side of equation (232) is due to the diffusive process (migrations). The last series
corresponds to the reactive process, i.e. population growth. We further simplify the model
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by assuming that all families move a distance ±�x in the x- and y-directions during T . Then
〈�xk〉 = �xk = 〈�yk〉 for k = 2, 4, etc. Such lattice models are widely used in biological
applications [99, 28]. Without such an approximation, comparison to observations would
require the estimation of an infinite set of parameters. We introduce the diffusion coefficient
as D = �2/4T [99], where �2 = �x2 + �y2 = 2�x2 is the square displacement between
subsequent migrations. Then, the only parameters in the diffusion series in equation (232) are
D and T .

In the lowest-order approximation, only terms of order T 0 are kept in equation (232) and
we recover Fisher’s equation, namely ∂p/∂t = D(∂2p/∂x2 + ∂2p/∂y2) + F(p). This in turn
reduces, for F(p) = 0, to Einstein’s result for diffusion [83].

Simple calculations are possible if we assume that, when a sufficiently long time has
elapsed from the onset of agriculture, the farmers’ wave of advance is approximately planar at
scales much larger than that of individual migrations. We may then choose the x-axis parallel
to the local velocity of the wave. Let v = |vx | stand for its speed (vy = 0). We introduce
the variable z = x − vt and look for constant-shape solutions, i.e. such that p depends only
on z. In general we have F(p) = ap + b2p2 + · · · , but the migration waves of advance
under consideration travel into extremely underpopulated areas, so that F(p) ≈ ap. It is now
easy to rewrite equation (232) as a differential equation involving only derivatives of p with
respect to z. Wavefronts corresponding to expanding populations can be expressed as linear
combinations of functions of the form p = exp[λz], with λ < 0 (see section 3.1). Use of this
form for p yields

N∑
n=0

(−T vλ)n+1

(n + 1)!T
=

N∑
n=0

(2DT λ2)n+1

(2(n + 1))!T
+ a

N∑
n=0

(−T vλ)n

(n + 1)!
, (233)

where N denotes the order of approximation. In the lowest approximation, it is clear that the
requirement λ < 0 (see section 3.1.1) imposes a minimum velocity of v(0) = 2

√
aD, which is

the Fisher–KPP result (221). In order to compare to the empirical evidence, let us assume (as in
sections 6.1 and 7.1) that the time interval T between two subsequent migrations is of about one
generation, T = 25 yr [57, 84], and recall that available measurements of the growth [85] and
diffusion [57,76] parameters yield the mean values a = 0.032 yr−1 and �2/τ = 1544 km2 per
generation, respectively. Use of these values yields v(0) = 2

√
aD = 1.41 km yr−1 according

to the zeroth order, or Fisher approximation. In contrast, archaeological data yield a rate of
spread of 1.0 ± 0.2 km yr−1 [57]. Higher-order solutions to equation (233) can be estimated
numerically by requiring, as above, that λ < 0. The leading results are v(1) = 1.15 km yr−1

(N = 1) and v(2) = 1.05 km yr−1 (N = 2). The solutions are seen to converge quickly (see
figure 14) to a limiting value of v(∞) = 0.98 km yr−1. This result can be checked by writing
equation (233) (for N → ∞) as

(e−vτλ − 1)
(

1 +
a

vλ

)
= [cosh(λ

√
2Dτ) − 1] (234)

and solving this equation numerically.
Consistency with the classical results can be again checked by noting that equation (232)

has been obtained by dividing the ∞-term generalization of equation (215) by T . Accordingly,
if we divide equation (234) by T and consider the limit T → 0 we recover Fisher’s dispersion
relation (i.e. equation (77) with τ → 0), as it should be.

Although equation (234) cannot be solved analytically, we can show that it leads to
wavefronts with a finite minimum velocity of propagation. In order to see this, in figure 15
we plot the functions in the left- and right-hand sides of equation (234). For given values
of λ, D and T , the RHS has the shape shown in the figure. Then, to each possible value of
the reaction (or growth) parameter a there will correspond a minimum possible value of the
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Figure 14. Predictions for the speed of spread of agriculture, as a function of the highest-order
terms included in equation (233). N = 0 corresponds to the classical, Fisher model. Squares give
the predicted speed, which has been computed for several values of the parameters �2/τ and a.

A statistical analysis of measurements [57, 76, 85] yields �2/τ = 1544 ± 368 km2 per generation
and a = 0.032 ± 0.003 yr−1 (80% confidence-level intervals). Results have been computed for a
generation time of τ = 25 yr [57]. The full line corresponds to mean values of the parameters,
whereas the dotted and dashed lines refer to extreme values. It is seen that for N � 2 there is good
agreement, in all cases, between the predictions of the finite-order models, the exact model and
the experimentally measured range for the speed of the agricultural expansion in Europe (shaded
region).

–aτ

v> vmin 

v> vmin

LHS

RHS

λ

Figure 15. Plot of the left- and right-hand sides of equation (234). It is seen that a solution to this
equation exists provided that v is higher than a certain minimum value which will depend on the
values of the diffusive and reactive parameters D, τ and a.

velocity v, since the requirement λ < 0 implies that the LHS of equation (234) increases with
increasing v: the functions in the LHS and RHS will certainly not cross for low enough values
of v. Thus for given values of the parameters, a real solution to equation (234) will exist only
for speeds above minimum value, in complete analogy to the Fisher and hyperbolic results
obtained above by the same method.
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Figure 16. This figure shows the predictions of taking into account infinite higher-order terms in the
mathematical model (see equation (234)). The hatched rectangle gives the values for the reaction
and diffusion parameters (a and D, respectively) implied by independent observations. The curves
give the values of a and D for wavefront velocities of 0.8, 1.0 and 1.2 km yr−1, according to the
model derived in the text. Since the velocity inferred from archaeology is 1.0 ± 0.2 km yr−1, there
is good agreement between theory and experiment. Comparing to figure 11 (which was obtained
by including only some lower-order terms), it is seen that the hyperbolic approach (which leads to
figure 11) is a reasonable approximation to the exact speed (this figure).

From figure 16, obtained by integrating equation (234) numerically, we see that the exact
solution (N → ∞) agrees well with the measured speed. In contrast, Fisher’s result v(0)

differs from that for N → ∞ by about 44% (figure 14). We also note that the hyperbolic
approximation, which is consistent with the measured speed (section 6.1), is similar in
magnitude to the exact value (compare figure 11 (HRD approximation) to figure 16 (exact
results)). In other applications, however, the HRD approach may not be a fair approximation,
thus the exact theory above should be used to asses or improve the predictions from the
hyperbolic approximation.

8.2. The spread of epidemics

Time-delayed reaction–diffusion has been applied to the spread of epidemics by Méndez [100],
improving the classical, non-delayed model due to Noble [4].

Langer collected a series of statistics on the Black Death plague, which caused the death
of about a quarter of the European human population [101]. The chronological spread of this
plague across western and central Europe from the year AD 1347–1350 was mapped. From
this, the front propagation speed was inferred ([101], see also section 20.2 in [28]).

Two different models have been proposed to take into account the incubation delay (also
called infected-infectious period). As we will see, this assumption plays an important role in
the speed of spread of epidemics, and the results have been compared to the case of the Black
Death plague [100].

8.2.1. The SI model. This model consists of only two populations, infectious I (x, t)

and susceptible S(x, t), which interact. We model the spatial dispersal of I and S by
simple diffusion with the same diffusion coefficient D. We consider the transition rate from
susceptible to infected to be proportional to rSI , where r is a constant parameter that measures
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the transmission efficiency of the disease. This means that rS is the number of susceptible
individuals who catch the disease from each infectious unit. The susceptible members who
catch the disease become infected members, an intermediate stage between susceptible and
infectious. After a period τ, infected members become infectious and may transmit the disease
to other susceptible individuals with an efficiency r . We assume that the infectious members
have a disease-induced mortality rate αI, where α−1 is the life expectancy. The evolution
equations take the form

∂tS = D∂xxS − rS(x, t)I (x, t),

∂t I = D∂xxI + rS(x, t − τ)I (x, t − τ) − αI (x, t).
(235)

Introducing the dimensionless variables I ∗ = I/S0, S∗ = S/S0, t∗ = rS0t and x∗ =
x
√

rS0/D where S0 is a representative population, equation (235) becomes

∂tS = ∂xxS − S(x, t)I (x, t),

∂t I = ∂xxI + S(x, t − a)I (x, t − a) − λI (x, t),
(236)

where a = τrS0, λ = α/(rS0) and we have omitted asterisks for notational simplicity. We
look for travelling wave solution to equation (236) by setting z = x−ct where c is the constant
wave speed which must be determined. Equation (236) yields the system

S ′′ + cS ′ − IS = 0,

I ′′ + cI ′ − λI +

( ∞∑
n=0

(ca)n

n!

dnI

dzn

)( ∞∑
n=0

(ca)n

n!

dnS

dzn

)
= 0,

(237)

where we have expanded in Taylor series the terms S(x, t − a) and I (x, t − a). The only
homogeneous steady state is (0, S∞) where S∞ may be any positive real value. The problem
consist in finding the vales of c such that a nonnegative solution for S and I exists and [4]

I (−∞) = I (∞) = 0 and 0 � S(−∞) < S∞ = S(∞) = 1. (238)

By linearizing the system (237) about the steady state we obtain

v′′ + cv′ − u = 0,

u′′ + cu′ − λu +
∞∑

n=0

(ca)n

n!

dnu

dzn
= 0,

(239)

where u ≡ I and v ≡ S − S∞. The second equation in (239) is uncoupled from v and has the
characteristic equation

µ2 + cµ − λ + eµca = 0 (240)

which follows from assuming a solution of the form u ∼ eµz. Since we must require that I (z)

cannot oscillate, we demand two real solutions for µ. In order to do this, it is necessary that
the restriction

e−c2a/2 < λ +
c2

4
(241)

be fulfilled.

Application to the Black Death plague. In dimensional terms, the minimum speed of travelling
waves is given by Vmin = 2

√
rS0Dcmin. In order to compare the speed predicted by the model

to the observed one, we must know the value of τ. This value could be related to the incubation
period but a direct correspondence is not yet established. We take the same approximate values
used by Noble [4]. The population density was approximately 50 persons per square miles, the
diffusion coefficient was roughly obtained by estimating that news and minor gossip spread
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160 km in 1 yr. Thus, D is of order (160 km)2 per year ≈ 104 square miles per year. The
transmission coefficient was r ≈ 0.4 square miles per year and the life expectancy is about
2 weeks, so α ≈ 15 yr−1. With these parameters we obtain that the classical model (τ = 0)
yields an asymptotic speed of 447.2 miles per year, somewhat greater than the experimental
result of 200–400 miles per year. If we take the infected-infectious period of 2 weeks, which
seems reasonable, the asymptotic speed predicted by the equality in (241) is 281.7 miles per
year, which lies entirely in the experimental range.

8.2.2. The SII model. A second model which takes into account the infected-infectious period
may be developed by including a third species [100]. Let Î the number density of infected
members, and I the number density of infectious members. We assume now that the infected
members have an infectious transition rate Î /τ, where τ is the characteristic time of transition
from infected to infectious, and that all of the susceptible members who catch the disease
become infected. So, the evolution equations are given by

∂tS = ∂xxS − SI,

∂t Î = ∂xx Î + SI − Î

a
,

∂t I = ∂xxI − λI +
Î

a
(242)

in dimensionless variables. If we fix the reference frame onto the moving front by using the
transformation z = x − ct, we get

S ′′ + cS ′ − IS = 0,

Î ′′ + cÎ − 1

a
Î + SI = 0,

I ′′ + cI ′ − λI +
1

a
Î = 0. (243)

Analogously to the previous model, the homogeneous steady state is (S, Î , I ) = (1, 0, 0).

Defining the new variables v = S − 1, w = Î , and u = I and linearizing about the steady
state, one obtains

v′′ + cv′ − u = 0,

w′′ + cw′ − 1

a
w + u = 0,

u′′ + cu′ − λu +
1

a
w = 0. (244)

This system of equations may be written in a compact form given by

U′′ + cI·U′ + A · U = 0 (245)

where I is the unity matrix, U = (v, w, u)T and

A =




0 0 −1

0 −1

a
1

0
1

a
−λ


 . (246)

By assuming a solution of the form U = Uoeµz we get the characteristic equation

µ

[
µ2 + µ

(
λ +

1

a

)
+

1

a
(λ − 1)

]
= 0. (247)
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In order to have real values for µ, from equation (247) it is necessary that

c > cmin =
√

2



√(

λ − 1

a

)2

+
4

a
− λ − 1

a




1/2

, (248)

with λ < 1.

Application to the Black Death plague. In dimensional units the asymptotic speed has
the form

Vmin =
√

2rS0D



√(

α

rS0
− 1

τrS0

)2

+
4

τrS0
− α

rS0
− 1

τrS0




1/2

. (249)

Taking the same experimental values used in the first model we get Vmin = 339.5 miles per
year which also lies in the experimental range.

Both of the two previous models use an infected-infectious delay τ of two weeks, and they
lead to a speed of the disease propagation which lies entirely in the experimental range [100].
Murray [28] excuses the predictions of the classical, non-delayed approach (τ = 0) on the
basis that such a model is extremely simple and does not take into account the nonuniformity in
population density, the stochastic processes, and so on. The fact is that, with simple extensions
of the classical model based only on incorporating a time delay, substantial corrections and
better results are obtained.

9. Conclusions and perspectives

In this section we first present an overview of the current status of the field reviewed, and then
point out some unsolved problems and areas of likely future development.

9.1. Overview

The formulation of time-delayed equations in reactive–diffusive systems is now a topic well-
advanced. Hyperbolic equations are a relevant case of time-delayed equations. They are exact
in some specific systems (section 2.5) but in others they correspond to cut Taylor expansions
at a finite order in the derivation of the evolution equation (e.g. sections 1.1–1.4).

The problem of wavefront speed selection for HRD equations has advanced tremendously
in recent years. A wide number of techniques is now available (section 3). Depending
on the system considered, the source or reactive function precludes the use of some of
such methods. Thus one must choose the appropriate method of solution for each particular
system. This has been applied to problems such diverse as population theory, genetic and
forest fire models, bistable systems and thermal wavefronts in combustion, solidification and
superconductors (section 4). The theory has been also extended to cover several-species
systems, which are very important in population theory and combustion fronts (section 5).

Comparison to observations shows the usefulness of the theoretical work in several
phenomena. For the neolithic transition fronts, there is substantial improvement over classical
results. Here the single-species approach (section 6.1) provides a good approximation to a more
detailed one incorporating several species (section 7.1). Other applications for which there
are observational data available also show the importance of time-delay effects (section 6.2).
A particularly appealing test of the models if provided by measurements of the front speeds
for the replication and spread of viruses in growing plaques (section 7.2). Here the relevant
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observational data can be easily reproduced in the laboratory. Again, time-delayed effects
modify the predictions substantially, leading to good agreement with experiment.

Time-delayed models that go beyond the hyperbolic approach have also been developed
in recent years. They have been already used to test the validity of the hyperbolic approach in
population models (section 8.1). Moreover, they have been applied to the spread of epidemics,
yielding better agreement with observational data than non-delayed models (section 8.2).

9.2. Future progress

Chemically-reacting systems [17, 18, 102, 103], superconductors [104], liquid crystals [105]
and solidification [106] are topics in which extensive simulations are being performed in order
to determine wavefront velocities: the methods presented here could be a useful analytical
approach in situations such that the effect of a delay time could be important.

Both analytical work [17] and Montecarlo simulations [18] have predicted time-delayed
effects in chemically-reacting systems similar to those here reviewed. This is an interesting
topic that deserves further attention.

Another recent field of application is crystal growth and solidification fronts [19,20] (see
section 5.6). However, comparison to experiment has not yet been performed for such systems.
Relevant experiments in which the speed of solidification fronts is measured [107, 108] show
dendritic or needle-shape structures, which cannot be captured by means of 1D models. In view
of this, numerical simulations of equations of the kind used by Galenko and Danilov [19, 20]
(see equations (184) and (185)) in several dimensions could be performed in order to compare
to experiment. This is similar to the fingering problem in combustion [109].

Other topics that deserve future work are combustion fronts [72] and forest fire models [73]
that take proper care of the ignition delay (see section 5.6).

As far as human population expansions are concerned, here we have focused our attention
in the neolithic transition in Europe simply because the quantity of archaeological observations
is higher in this case than for other human expansions. We have already mentioned that for
the Oceanic neolithic expansion [110], the same model also gives a good description of the
process [24]. However, there is evidence that similar processes took place in Africa [111],
America [112] and China [113]. The approach we have presented should in our opinion be
applied to these expansions as soon as sufficient and reliable empirical data become available.

Biological population expansions are certainly a research area to which physical models
should offer important contributions in the future. There are observational data available for
many biological species [114–116, 125–127]. We expect that the time-delayed approaches
reviewed will become widely applied in the future because of the relevant corrections they
yield, as compared to non-delayed models, for the examples in which direct comparison to
empirical evidence has already been performed (sections 6–8). In the long term, the final goal
should be to provide a mathematical description of the temporal evolution of the geographical
distribution of life on Earth. If wide time spans are to be covered, the models reviewed should
be modified to incorporate the evolution of climate. This connects with another important
unsolved problem, namely the mathematical description of the population range changes that
are beginning to be detected because of the present climate change [117].

Concerning several-species models, an important problem that should be addressed is that
of mass extinctions, for which there are experimental data available. The simple estimate in
section 6.2 shows the relevance of the delay time. Several-species models as well as numerical
simulations should be used to address this topic.

The spread of epidemics (section 8.2) is also a topic to which physical models which
incorporate the delay time should contribute. A well-known example is the House Finch
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epidemic, for which there are observational data available for the front speed, and the population
growth and diffusion parameters [118]. Plant disease epidemiology is an important topic for
which there are also unexplained empirical data and to which the role of the delay time has been
never analysed, in spite of the importance of the latent time for most pathologies [119, 120].

Finally, we stress that the models reviewed are not restricted to a specific system and could
thus be useful in the study of thermal and chemical fronts [19, 20, 17, 18, 102], plant as well
as animal range expansions [121] and other biophysical topics in which reaction–diffusion is
of utmost importance, such as nerve conduction [28, 58], cellular sensitivity [59], the growth
of bacterial colonies [122] and models of mithocondrial tissue [123].
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