Sediment fluidization events in a lake caused by large monthly rainfalls

Jordi Colomer, Teresa Serra, Marianna Soler, and Xavier Casamitjana

Department of Physics, University of Girona, Girona, Spain

Received 25 October 2001; revised 30 October 2001; accepted 12 November 2001; published XX Month 2002.

[1] In the last fourteen years (1986–1999), fluidizations of confined bed—sediments due to underground springs in basin BII of lake Banyoles (Spain) have been detected. As a result of periods of high precipitation, sediment confined at the bottom of karstic basins migrates from 45 m depth to approximately 25 m depth. Fluidization processes are associated to monthly rainfall 1.5 to 4.5 times larger than the long-term mean (1970–1999). As a result of a fluidization event, the water column of the lake maintains the particle volume concentrations of suspended sediment (pVC) as high as 44 μl/l, which is ~8–29 times larger than the usual values of pVC.

INDEX TERMS: 3309 Meteorology and Atmospheric Dynamics: Climatology (1620); 4239 Oceanography: General: Limnology; 4558 Oceanography: Physical: Sediment transport

1. Fluidization Processes in the Main Basins of Lake Banyoles

[2] Lake Banyoles (42°07′N, 2°45′E) is situated in the northeast of Spain, in the Catalan prePyrenees, and 30 km west from the Mediterranean coast (Figure 1a). It is a small multibasin lake (surface area of 1.12 km²) of mixed tectonic-karstic origin, composed of several basins. The main supply of water to the lake is through subterranean springs located at the bottom of the basins of the lake [Abella, 1980; Casamitjana and Roget, 1993; Colomer et al., 1998]. An underlying fault (at the East of the lake), which acts as a barrier to ground water movement in a complex series of confined aquifers, forces the vertical discharge of the ground water flow through the bottom of the basins (Figures 1a and 1b). The aquifers are supplied by the percolation of precipitation in two watersheds located 20 km to the northwest of Banyoles (Alta Garrotxa, Figure 1b). The main basins of the lake, BI and BII (see Figure 2) have a maximum depth of 75 and 77 m, respectively [Canals et al., 1990]. As a result of cumulative episodes of land subsidence, the basins have cone-shape structures as can be seen, for example, in the seismic profile at BI (Figure 2).

[3] Sediments in BI (Figure 2) are normally found in suspension (is a case of sustained hydrologic pressure, as also seen exceptionally in a karst pond in the Florida aquifer system, page 57 in the vol. 195 (March) of National Geographic, Ringle and Skiles, [1999]). In contrast, sediments in BII normally remain at the bottom of the basin forming a dense sediment bed, at 45 m depth. However, an increase in the amount of precipitation in the recharge area produces an increase of groundwater discharge that eventually resuspends the sediments (Figure 2 top right). The mean mass concentration of the fluidized sediment bed in BI ranges from 100 to 130 g/l meanwhile the sediment concentration in BII varies from 280 g/l at the beginning of a fluidization event to 180 g/l when sediments remain in suspension. During a fluidization process, the sediment resuspension is characterized by the formation of a dense sediment interface (see the flat signal in the echosounding and seismic profiles in BI and BII in Figure 2) that advances upwards from 45 m depth to ~25 m depth; the time evolution of the position of the sediment interface is shown in Figure 3 (bottom panel). The momentum of the underground spring and the characteristics of the sediment (mainly the particle size diameter) determine the maximum height that the sediment interface can rise to [Casamitjana et al., 1996; Colomer et al., 1998]. Also, the temperature at the sediment interface increases from 17.5°C at the beginning of the event to 19.4°C in the suspension state, which is caused by the enhanced circulation of incoming warm water within the fluidized bed.

[4] Since 1986 monthly temperature measurements were carried out at a station located at the center of BI, at intervals of 1 m depth. Moreover, since 1998 monthly measurements of pVC at the same depth intervals were done (data that will be discussed later on in the text). In this study the depth of the sediment interface identifying the top of the fluidized bed was found to be the depth of maximum inverse vertical temperature gradient (between 8°C/m and 2°C/m), i.e., warmer temperature below...
the sediment interface than the water above it. As a result of the
extensive measurements carried out in the period 1986–1999 in
lake Banyoles, six fluidization events (F3–F8) were detected (see
Figure 3, bottom panel). Unfortunately, in the 70s and early 80s
data were only taken intermittently. Consequently in 1976 and
1977 only two fluidization events (F1–F2) were detected (data
not shown).

2. Fluidization Events and Monthly Rainfall in
the Area of Study

[5] In Figure 3 (top) plots of monthly precipitation covering
the interval (5 months) of a fluidization event are shown. More
precisely, the month at which the fluidization of the confined
sediments starts coincides with the 3rd month within the interval.

Also, in Table 1 we list the month of initiation of fluidization
(i.e., when the flat sediment interface at the top of the fluidized
bed initiates the upward migration) and the percentage of monthly
rainfall (%P) related to the long-term mean (1970–1999). Data
were taken at the Darnius and Sant Privat d’en Bas meteorolo-
gical stations which are located 15 km North-East and 10 km
South-West, respectively, far from the area of the aquifer recharge
(unfortunately no meteorological station is situated within the
area of the aquifer recharge). Sediment resuspension events are
preceded by months of high precipitation; the excess of percent-
age of rainfall ranging from 85 (F4) to 351% (F7), see Table 1
for details. Although it should be noted that F4 and F8 events do
not present large values of precipitation (see also Figure 3 top
and Table 1), it was enough to strength and maintain the fluid-
ization. The F5 event corresponded to a monthly rainfall 239%
larger than the mean long-term (Table 1). The rainfall was caused
by a well defined synoptic weather situation in the Iberian
Mediterranean coast, with “East” wind at the surface (from the
Mediterranean sea) and cold temperature at the mid-troposphere
above. On the contrary, the other events are associated to north-
west Atlantic fronts.

3. Interannual Variability of Inorganic Particle
Suspension in Lake Banyoles as a Result of
Fluidization Events in BII

[6] As a result of the F8 event that ended on December-97, the
water column in lake Banyoles (measured four months later on the
1st of May, 1998) had high particle volume concentrations, pVC,
Figure 4. pVC was measured with a laser in situ scattering and
transmissometry instrument (LISST-100) that determines pVC at
different depths of the water column. LISST-100 measures the pVC of particles in 64 size classes logarithmically distributed in the range 1.2–250 μm by using the laser diffraction theory. The integration of this data gives the pVC of the measured sample. In addition, LISST-100 gives information of the depth at which the measure is taken, with a resolution of 5 cm, by means of a pressure sensor. High pVC values (32–44 μl/l) were measured on the 1st of May of 1998 in BII. In the next winter period, in February-99 (after a dry fall period), a whole depth-mixing column prevailed with values of pVC of 1.5–4 μl/l; the decrease in the pVC from May-98 to February-99 can be attributed to the sedimentation of particles in the water column. As a conclusion, fluidization events, which determine the water quality of the lake, have been found to be related to high levels of monthly precipitation.

Acknowledgments. We would like to thank the people in charge of the meteorological stations of Fontcoberta, Darnius and Sant Privat d’en Bas, who provided the database for rainfall analysis. To J. Pasqual (meteorological station of l’Estartit) for providing some of the temperature data in basin II.

References


J. Colomer, T. Serra, M. Soler, and X. Casamitjana, Department of Physics, University of Girona, 17071 Girona, Spain. (colomer@infern.udg.es)